The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A087413 a(n) = Sum_{k=1..n} C(3*k,k)/3. 3
 1, 6, 34, 199, 1200, 7388, 46148, 291305, 1853580, 11868585, 76380825, 493606725, 3201081873, 20821158233, 135776966761, 887393271310, 5811082966885, 38119865826420, 250447855600320, 1647729357535485, 10854207824989830, 71581930485576630 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 LINKS Vincenzo Librandi, Table of n, a(n) for n = 1..200 FORMULA G.f.: 1/((3*g-1)*(g^3-2*g^2+g-1)*(g-1)^2) where g*(1-g)^2 = x. - Mark van Hoeij, Nov 10 2011 Recurrence: 2*n*(2*n-1)*a(n) = (31*n^2-29*n+6)*a(n-1) - 3*(3*n-2)*(3*n-1)*a(n-2). - Vaclav Kotesovec, Oct 14 2012 a(n) ~ 3^(3*n+5/2)/(23*2^(2*n+1)*sqrt(Pi)*sqrt(n)). - Vaclav Kotesovec, Oct 14 2012 a(n) = Sum_{k=1..n} binomial(3*k-1,k-1). [Bruno Berselli, Oct 10 2015] MATHEMATICA Table[Sum[Binomial[3*k, k]/3, {k, 1, n}], {n, 1, 20}] (* Vaclav Kotesovec, Oct 14 2012 *) PROG (PARI) a(n)=sum(k=1, n, binomial(3*k, k))/3 \\ Charles R Greathouse IV, Nov 10 2011 (PARI) a=vector(99, i, 1); for(n=2, #a, a[n]=a[n-1]+binomial(3*n, n)/3); a \\ Charles R Greathouse IV, Nov 10 2011 CROSSREFS Cf. A188675: Sum_{k=0..n} binomial(3*k,k). Cf. A263134: Sum_{k=0..n} binomial(3*k+1,k). Sequence in context: A273583 A126501 A218990 * A337906 A244829 A059228 Adjacent sequences: A087410 A087411 A087412 * A087414 A087415 A087416 KEYWORD nonn,easy AUTHOR Benoit Cloitre, Oct 21 2003 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 29 11:24 EDT 2023. Contains 363031 sequences. (Running on oeis4.)