login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A126501
Number of n-tuples of numbers [0..5] (leading zeros allowed) in which adjacent digits differ by 4 or less.
16
1, 6, 34, 194, 1106, 6306, 35954, 204994, 1168786, 6663906, 37994674, 216628994, 1235123666, 7042134306, 40151166194, 228924368194, 1305226505746, 7441830001506, 42430056030514, 241917600158594, 1379308224915026
OFFSET
0,2
COMMENTS
For n>=1, a(n) equals the numbers of words of length n-1 on alphabet {0,1,...,5} containing no subwords 00 and 11. - Milan Janjic, Jan 31 2015
See PARI script for proof of g.f. - Andrew Howroyd, Apr 15 2017
FORMULA
[Empirical] a(base,n) = a(base-1,n)+9^(n-1) for base>=4n-3; a(base,n) = a(base-1,n)+9^(n-1)-2 when base=4n-4.
From Philippe Deléham, Mar 24 2012: (Start)
G.f.: (1+x)/(1-5*x-4*x^2).
a(n) = 5*a(n-1) + 4*a(n-2), a(0) = 1, a(1) = 6.
a(n) = Sum_{k, 0<=k<=n} A054458(n,k)*3^k. (End)
Conjecture: a(n) = (2^(-1-n)*((5-sqrt(41))^n*(-7+sqrt(41)) + (5+sqrt(41))^n*(7+sqrt(41)))) / sqrt(41). - Colin Barker, Jan 20 2017
MATHEMATICA
LinearRecurrence[{5, 4}, {1, 6}, 21] (* Jean-François Alcover, Oct 07 2017 *)
PROG
(S/R) stvar $[N]:(0..M-1) init $[]:=0 asgn $[]->{*} kill +[i in 0..N-2](($[i]`-$[i+1]`>4)+($[i+1]`-$[i]`>4))
(PARI) \\ Proof of generating function
TransferGf(m, u, t, v, z)=vector(m, i, u(i))*matsolve(matid(m)-z*matrix(m, m, i, j, t(i, j)), vectorv(m, i, v(i)));
RowGf(d, m, z)=1+z*TransferGf(m, i->1, (i, j)->abs(i-j)<=d, j->1, z);
print(RowGf(4, 6, x)); \\ Andrew Howroyd, Apr 15 2017
CROSSREFS
Cf. Base 6 differing by three or less A126474, two or less A126393, one or less A126360.
Sequence in context: A326656 A154244 A273583 * A370224 A218990 A087413
KEYWORD
nonn,easy
AUTHOR
R. H. Hardin, Dec 28 2006
STATUS
approved