login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A054458
Convolution triangle based on A001333(n), n >= 1.
9
1, 3, 1, 7, 6, 1, 17, 23, 9, 1, 41, 76, 48, 12, 1, 99, 233, 204, 82, 15, 1, 239, 682, 765, 428, 125, 18, 1, 577, 1935, 2649, 1907, 775, 177, 21, 1, 1393, 5368, 8680, 7656, 4010, 1272, 238, 24, 1, 3363, 14641, 27312, 28548, 18358, 7506, 1946, 308, 27, 1
OFFSET
0,2
COMMENTS
In the language of the Shapiro et al. reference (given in A053121) such a lower triangular (ordinary) convolution array, considered as a matrix, belongs to the Bell-subgroup of the Riordan-group.
The G.f. for the row polynomials p(n,x) (increasing powers of x) is LPell(z)/(1-x*z*LPell(z)) with LPell(z) given in 'Formula'.
Column sequences are A001333(n+1), A054459(n), A054460(n) for m=0..2.
Mirror image of triangle in A209696. - Philippe Deléham, Mar 24 2012
Subtriangle of the triangle given by (0, 3, -2/3, -1/3, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (1, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. - Philippe Deléham, Mar 25 2012
Riordan array ((1+x)/(1-2*x-x^2), (x+x^2)/(1-2*x-x^2)). - Philippe Deléham, Mar 25 2012
LINKS
Milan Janjić, Words and Linear Recurrences, J. Int. Seq. 21 (2018), #18.1.4.
FORMULA
a(n, m) := ((n-m+1)*a(n, m-1) + (2n-m)*a(n-1, m-1) + (n-1)*a(n-2, m-1))/(4*m), n >= m >= 1; a(n, 0)= A001333(n+1); a(n, m) := 0 if n<m.
G.f. for column m: LPell(x)*(x*LPell(x))^m, m >= 0, with LPell(x)= (1+x)/(1-2*x-x^2) = g.f. for A001333(n+1).
G.f.: (1+x)/(1-2*x-y*x-x^2-y*x^2). - Philippe Deléham, Mar 25 2012
T(n,k) = 2*T(n-1,k) + T(n-1,k-1) + T(n-2,k) + T(n-2,k-1), T(0,0) = T(1,1) = 1, T(1,0) = 3 and T(n,k) = 0 if k<0 or if k>n. - Philippe Deléham, Mar 25 2012
Sum_{k=0..n} T(n,k)*x^k = A040000(n), A001333(n+1), A055099(n), A126473(n), A126501(n), A126528(n) for x = -1, 0, 1, 2, 3, 4 respectively. - Philippe Deléham, Mar 25 2012
EXAMPLE
Fourth row polynomial (n=3): p(3,x)= 17+23*x+9*x^2+x^3.
Triangle begins :
1
3, 1
7, 6, 1
17, 23, 9, 1
41, 76, 48, 12, 1
99, 233, 204, 82, 15, 1
239, 682, 765, 428, 125, 18, 1. - Philippe Deléham, Mar 25 2012
(0, 3, -2/3, -1/3, 0, 0, 0, ...) DELTA (1, 0, 0, 0, ...) begins :
1
0, 1
0, 3, 1
0, 7, 6, 1
0, 17, 23, 9, 1
0, 41, 76, 48, 12, 1
0, 99, 233, 204, 82, 15, 1
0, 239, 682, 765, 428, 125, 15, 1. - Philippe Deléham, Mar 25 2012
CROSSREFS
Cf. A002203(n+1)/2. Row sums: A055099(n).
Sequence in context: A111806 A372118 A321163 * A110168 A323663 A355928
KEYWORD
easy,nonn,tabl
AUTHOR
Wolfdieter Lang, Apr 26 2000
STATUS
approved