login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Convolution triangle based on A001333(n), n >= 1.
9

%I #26 Apr 03 2024 05:03:12

%S 1,3,1,7,6,1,17,23,9,1,41,76,48,12,1,99,233,204,82,15,1,239,682,765,

%T 428,125,18,1,577,1935,2649,1907,775,177,21,1,1393,5368,8680,7656,

%U 4010,1272,238,24,1,3363,14641,27312,28548,18358,7506,1946,308,27,1

%N Convolution triangle based on A001333(n), n >= 1.

%C In the language of the Shapiro et al. reference (given in A053121) such a lower triangular (ordinary) convolution array, considered as a matrix, belongs to the Bell-subgroup of the Riordan-group.

%C The G.f. for the row polynomials p(n,x) (increasing powers of x) is LPell(z)/(1-x*z*LPell(z)) with LPell(z) given in 'Formula'.

%C Column sequences are A001333(n+1), A054459(n), A054460(n) for m=0..2.

%C Mirror image of triangle in A209696. - _Philippe Deléham_, Mar 24 2012

%C Subtriangle of the triangle given by (0, 3, -2/3, -1/3, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (1, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. - _Philippe Deléham_, Mar 25 2012

%C Riordan array ((1+x)/(1-2*x-x^2), (x+x^2)/(1-2*x-x^2)). - _Philippe Deléham_, Mar 25 2012

%H Milan Janjić, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL21/Janjic/janjic93.html">Words and Linear Recurrences</a>, J. Int. Seq. 21 (2018), #18.1.4.

%F a(n, m) := ((n-m+1)*a(n, m-1) + (2n-m)*a(n-1, m-1) + (n-1)*a(n-2, m-1))/(4*m), n >= m >= 1; a(n, 0)= A001333(n+1); a(n, m) := 0 if n<m.

%F G.f. for column m: LPell(x)*(x*LPell(x))^m, m >= 0, with LPell(x)= (1+x)/(1-2*x-x^2) = g.f. for A001333(n+1).

%F G.f.: (1+x)/(1-2*x-y*x-x^2-y*x^2). - _Philippe Deléham_, Mar 25 2012

%F T(n,k) = 2*T(n-1,k) + T(n-1,k-1) + T(n-2,k) + T(n-2,k-1), T(0,0) = T(1,1) = 1, T(1,0) = 3 and T(n,k) = 0 if k<0 or if k>n. - _Philippe Deléham_, Mar 25 2012

%F Sum_{k=0..n} T(n,k)*x^k = A040000(n), A001333(n+1), A055099(n), A126473(n), A126501(n), A126528(n) for x = -1, 0, 1, 2, 3, 4 respectively. - _Philippe Deléham_, Mar 25 2012

%e Fourth row polynomial (n=3): p(3,x)= 17+23*x+9*x^2+x^3.

%e Triangle begins :

%e 1

%e 3, 1

%e 7, 6, 1

%e 17, 23, 9, 1

%e 41, 76, 48, 12, 1

%e 99, 233, 204, 82, 15, 1

%e 239, 682, 765, 428, 125, 18, 1. - _Philippe Deléham_, Mar 25 2012

%e (0, 3, -2/3, -1/3, 0, 0, 0, ...) DELTA (1, 0, 0, 0, ...) begins :

%e 1

%e 0, 1

%e 0, 3, 1

%e 0, 7, 6, 1

%e 0, 17, 23, 9, 1

%e 0, 41, 76, 48, 12, 1

%e 0, 99, 233, 204, 82, 15, 1

%e 0, 239, 682, 765, 428, 125, 15, 1. - _Philippe Deléham_, Mar 25 2012

%Y Cf. A002203(n+1)/2. Row sums: A055099(n).

%Y Cf. A001333, A054459, A054460.

%Y Cf. A040000, A001333, A055099, A126473, A126501, A126528.

%K easy,nonn,tabl

%O 0,2

%A _Wolfdieter Lang_, Apr 26 2000