login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A087414
Numbers n such that 2*n*k(n) is rational but not an integer, where k(n) is sum of successive remainders when computing the Euclidean algorithm for (1, 1/sqrt(n)) as defined in A086378 (MuPAD program is given there); numbers belonging to A086378 but not to A088900.
0
153, 1717, 2244, 2340, 3525, 3650, 6460, 7119, 7475, 10074, 14490, 19147, 20008, 20862, 21424, 21747, 24453, 25400, 26039, 27346, 28028, 28371, 31484, 35483, 37008, 44275, 44678, 45974, 50389, 52155, 62187, 63724, 64752
OFFSET
1,1
PROG
(PARI) /* z(n)!=0 iff n is in the sequence */
z(n)= { local(a, b, c, d, e, f, g, h, i, j, k);
b=a=sqrtint(n); d=f=i=1; e=g=h=0; j=c=n-a^2; if(!c, return(0));
until((a==b)&&(c==j), k=d+a*e; f*=c; d=a*d+e*n; e=k; g+=i; i*=c;
k=g+a*h; g=a*g+h*n; h=k; k=(a+b)\c; g-=i*k; a=c*k-a; c=(n-a^2)/c);
d=d/f-1; e/=f; g/=i; h/=i; i=d^2-n*e^2; k=h*d-g*e; g=g*d-h*e*n;
b=n-a^2; a=b*g-c*a*i; c=b*k+i*c; b*=i; !a*(2%(b/gcd(b, n*c))); }
CROSSREFS
Cf. A086378 and A088900.
Sequence in context: A050209 A109142 A014576 * A184369 A073938 A278285
KEYWORD
nonn
AUTHOR
Thomas Baruchel, Oct 21 2003
STATUS
approved