|
|
A073938
|
|
Numbers n such that A078142(n) = A078142(n+1) = A078142(n+2), where A078142(n) is the sum of the differences of the distinct prime factors p of n and the next square larger than p.
|
|
1
|
|
|
153, 3009, 3288, 5170, 5364, 11186, 11295, 11395, 12874, 13545, 16288, 17892, 27760, 28118, 34187, 38907, 47650, 55282, 63455, 64972, 65290, 95886, 104718, 106793, 110944, 155573, 163964, 169644, 172081, 187164, 202607, 203255, 204609
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
Are there infinitely many k-tuples in A078142?
|
|
LINKS
|
Amiram Eldar, Table of n, a(n) for n = 1..5000
|
|
MATHEMATICA
|
s[n_] := Total[Ceiling[Sqrt[(p = FactorInteger[n][[;; , 1]])]]^2 - p]; s1 = s2 = 0; seq = {}; Do[s3 = s[n]; If[s1 == s2 == s3, AppendTo[seq, n - 2]]; s1 = s2; s2 = s3, {n, 3, 2*10^5}]; seq (* Amiram Eldar, Dec 08 2019 *)
|
|
CROSSREFS
|
Cf. A071247, A078142.
Sequence in context: A014576 A087414 A184369 * A278285 A111086 A269664
Adjacent sequences: A073935 A073936 A073937 * A073939 A073940 A073941
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Jason Earls, Nov 20 2002
|
|
STATUS
|
approved
|
|
|
|