login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A199876
G.f. satisfies: A(x) = (1 + x*A(x)^3)*(1 + x^2*A(x)^3).
15
1, 1, 4, 19, 103, 604, 3728, 23866, 157015, 1055121, 7211227, 49970893, 350283538, 2479386646, 17696379769, 127220129807, 920376055978, 6695598216385, 48950677790253, 359456740745360, 2650089982411601, 19608110285151138, 145555836451997536, 1083723594296492362
OFFSET
0,3
LINKS
Vaclav Kotesovec, Recurrence
FORMULA
G.f. A(x) satisfies:
(1) A(x) = exp( Sum_{n>=1} [Sum_{k=0..n} C(n,k)^2 * x^k] * x^n*A(x)^(2*n)/n ).
(2) A(x) = exp( Sum_{n>=1} [(1-x)^(2*n+1)*Sum_{k>=0} C(n+k,k)^2*x^k )] * x^n*A(x)^(2*n)/n.
a(n) ~ c*d^n/n^(3/2), where d=7.9486365297943819... is the root of the equation -729 + 4374*d - 10827*d^2 + 13770*d^3 + 13095*d^4 + 28404*d^5 - 4664*d^6 + 108*d^7 = 0 and c = 0.2415824543... (note that the term with root d=35.7258 tends to zero). - Vaclav Kotesovec, Aug 18 2013
EXAMPLE
G.f.: A(x) = 1 + x + 4*x^2 + 19*x^3 + 103*x^4 + 604*x^5 + 3728*x^6 + 23866*x^7 +...
Related expansions:
A(x)^3 = 1 + 3*x + 15*x^2 + 82*x^3 + 483*x^4 + 2991*x^5 + 19192*x^6 +...
A(x)^6 = 1 + 6*x + 39*x^2 + 254*x^3 + 1683*x^4 + 11340*x^5 + 77544*x^6 +...
where A(x) = 1 + x*(1+x)*A(x)^3 + x^3*A(x)^6.
The logarithm of the g.f. equals the series:
log(A(x)) = (1 + x)*x*A(x)^2 + (1 + 2^2*x + x^2)*x^2*A(x)^4/2 +
(1 + 3^2*x + 3^2*x^2 + x^3)*x^3*A(x)^6/3 +
(1 + 4^2*x + 6^2*x^2 + 4^2*x^3 + x^4)*x^4*A(x)^8/4 +
(1 + 5^2*x + 10^2*x^2 + 10^2*x^3 + 5^2*x^4 + x^5)*x^5*A(x)^10/5 +
(1 + 6^2*x + 15^2*x^2 + 20^2*x^3 + 15^2*x^4 + 6^2*x^5 + x^6)*x^6*A(x)^12/6 +...
more explicitly,
log(A(x)) = x + 7*x^2/2 + 46*x^3/3 + 319*x^4/4 + 2281*x^5/5 + 16612*x^6/6 + 122571*x^7/7 +...
MATHEMATICA
nmax=20; aa=ConstantArray[0, nmax]; aa[[1]]=1; Do[AGF=1+Sum[aa[[n]]*x^n, {n, 1, j-1}]+koef*x^j; sol=Solve[Coefficient[(1+x*AGF^3)*(1+x^2*AGF^3)-AGF, x, j]==0, koef][[1]]; aa[[j]]=koef/.sol[[1]], {j, 2, nmax}]; Flatten[{1, aa}] (* Vaclav Kotesovec, Aug 18 2013 *)
PROG
(PARI) {a(n)=local(A=1+x); for(i=1, n, A=(1 + x*A^3)*(1 + x^2*A^3)+x*O(x^n)); polcoeff(A, n)}
(PARI) {a(n)=local(A=1+x); for(i=1, n, A=exp(sum(m=1, n, sum(j=0, m, binomial(m, j)^2*x^j)*(x*A^2+x*O(x^n))^m/m))); polcoeff(A, n, x)}
(PARI) {a(n)=local(A=1+x); for(i=1, n, A=exp(sum(m=1, n, (1-x)^(2*m+1)*sum(j=0, n, binomial(m+j, j)^2*x^j)*x^m*A^(2*m)/m))); polcoeff(A, n, x)}
CROSSREFS
Sequence in context: A151382 A234958 A188675 * A225029 A078940 A110531
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Nov 11 2011
STATUS
approved