The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A199879 Continued fraction for x value of the unique pairwise intersection on (0,1) of distinct order 5 power tower functions with parentheses inserted. 2
 0, 2, 2, 1, 35, 1, 2, 2, 1, 2, 5, 3, 1, 1, 45, 1, 1, 6, 11, 2, 9, 2, 2, 2, 2, 1, 1, 1, 29, 1, 3, 7, 4, 1, 7, 61, 1, 1, 2, 1, 2, 6, 2, 1, 1, 96, 11, 1, 2, 1, 1, 4, 14, 1, 10, 1, 2, 1, 7, 4, 7, 5, 10, 1, 6, 2, 2, 9, 6, 8, 3, 1, 3, 1, 3, 7, 9 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 LINKS EXAMPLE 0.42801103796472992390204... MAPLE with(numtheory): f:= x-> (x^(x^x))^(x^x): g:= x-> x^(x^((x^x)^x)): Digits:= 200: xv:= fsolve(f(x)=g(x), x=0..0.99): cfrac(evalf(xv), 120, 'quotients')[]; MATHEMATICA terms = 77; digits = terms+10; xv = x /. FindRoot[x^(x^2) - 2x == 0, {x, 1/2}, WorkingPrecision -> digits]; ContinuedFraction[xv, terms] (* Jean-François Alcover, Mar 24 2017 *) CROSSREFS Cf. A199814 (decimal expansion), A199880 (Engel expansion). Sequence in context: A048660 A019227 A163893 * A006828 A091752 A078078 Adjacent sequences:  A199876 A199877 A199878 * A199880 A199881 A199882 KEYWORD nonn,cofr AUTHOR Alois P. Heinz, Nov 11 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 25 23:58 EDT 2021. Contains 347664 sequences. (Running on oeis4.)