login
A215198
Numbers n such that n and n + 1 are both of the form p*q^5 where p and q are distinct primes.
2
8991, 9375, 335583, 364256, 488672, 535328, 677727, 690848, 755487, 768608, 864351, 908576, 924128, 955232, 1097631, 1377567, 1424223, 1608416, 1688607, 1875231, 2121632, 2124063, 2168288, 2277152, 2541536, 2575071, 2621727, 2901663, 3190624, 3241376, 3409375
OFFSET
1,1
COMMENTS
The smaller of adjacent values in A178740. - R. J. Mathar, Aug 08 2012
EXAMPLE
8991 is a member as 8991 = 37*3^5 and 8992 = 281*2^5.
MAPLE
with(numtheory):for n from 3 to 10^7 do:x:=factorset(n):y:=factorset(n+1):n1:=nops(x):n2:=nops(y):if n1=2 and n2=2 then xx1:=x[1]*x[2]^5 : xx2:=x[2]*x[1]^5:yy1:=y[1]*y[2]^5: yy2:=y[2]*y[1]^5:if (xx1=n or xx2=n) and (yy1=n+1 or yy2=n+1) then printf("%a, ", n):else fi:fi:od:
MATHEMATICA
lst={}; Do[f1=FactorInteger[n]; If[Sort[Transpose[f1][[2]]]=={1, 5}, f2=FactorInteger[n+1]; If[Sort[Transpose[f2][[2]]]=={1, 5}, AppendTo[lst, n]]], {n, 3, 10^7}]; lst
SequencePosition[Table[If[Sort[FactorInteger[n][[;; , 2]]]=={1, 5}, 1, 0], {n, 341*10^4}], {1, 1}][[;; , 1]] (* Harvey P. Dale, Nov 04 2023 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Michel Lagneau, Aug 05 2012
STATUS
approved