|
|
A074172
|
|
Smaller of two consecutive numbers of the form p^2*q where p and q are primes.
|
|
11
|
|
|
44, 75, 98, 116, 147, 171, 244, 332, 387, 507, 548, 603, 604, 724, 844, 908, 931, 963, 1075, 1083, 1251, 1324, 1412, 1467, 1556, 1587, 1675, 1772, 2523, 2524, 2636, 2644, 2763, 3283, 3356, 3411, 3508, 3788, 3987, 4075, 4203, 4204, 4418, 4491, 4804, 4868
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
From Robert Israel, Dec 06 2018: (Start)
There are four forms of terms, for odd primes p,q,r:
4*p where 4*p+1 = q^2*r, r == 1 (mod 4)
2*p^2 where 2*p^2+1 = q^2*r, r == 3 (mod 4)
p^2*q where p^2*q+1 = 2*r^2, q == 1 (mod 4)
p^2*q where p^2*q+1 = 4*r, q == 3 (mod 4).
Are there infinitely many terms of each type?
(End)
|
|
LINKS
|
Robert Israel, Table of n, a(n) for n = 1..10000
|
|
EXAMPLE
|
44 is a member as 44 = 2^2*11 and 45 = 3^2*5.
|
|
MAPLE
|
filter:= proc(n) local F;
F:= map(t -> t[2], ifactors(n)[2]);
F = [2, 1] or F = [1, 2]
end proc:
A054753:= select(filter, {$1..10000}):
sort(convert(A054753 intersect map(`-`, A054753, 1), list)); # Robert Israel, Dec 06 2018
|
|
MATHEMATICA
|
lst={}; Do[f1=FactorInteger[n]; If[Sort[Transpose[f1][[2]]]=={1, 2}, f2=FactorInteger[n+1]; If[Sort[Transpose[f2][[2]]]=={1, 2}, AppendTo[lst, n]]], {n, 3, 10000}]; lst
|
|
PROG
|
(PARI) isok1(n) = vecsort(factor(n)[, 2]) == [1, 2]~;
isok(n) = isok1(n) && isok1(n+1); \\ Michel Marcus, Sep 20 2017
|
|
CROSSREFS
|
Cf. A054753, A074173, A074174, A178032, A308683, A141621.
Sequence in context: A348076 A348345 A049103 * A039386 A043209 A043989
Adjacent sequences: A074169 A074170 A074171 * A074173 A074174 A074175
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Amarnath Murthy, Aug 30 2002
|
|
EXTENSIONS
|
More terms from T. D. Noe, Oct 04 2004
|
|
STATUS
|
approved
|
|
|
|