login
A215203
a(0) = 0, a(n) = a(n - 1)*2^(n + 1) + 2^n - 1. That is, add one 0 and n 1's to the binary representation of previous term.
3
0, 1, 11, 183, 5871, 375775, 48099263, 12313411455, 6304466665215, 6455773865180671, 13221424875890015231, 54154956291645502388223, 443637401941159955564326911, 7268555193403964711965932118015, 238176016577461115681699663643131903
OFFSET
0,3
LINKS
FORMULA
a(0)=0, a(n) = a(n-1)*2^(n+1) + 2^n - 1.
a(n)*2 + A076131(n+1) + 1 = 2^A000217(n+1).
EXAMPLE
Binary representations:
a(0): 0;
a(1): 1;
a(2): 1011;
a(3): 10110111;
a(4): 1011011101111;
a(5): 1011011101111011111;
a(6): 10110111011110111110111111;
a(7): 1011011101111011111011111101111111;
a(8): 1011011101111011111011111101111111011111111, etc.
MATHEMATICA
nxt[{n_, a_}]:={n+1, FromDigits[Join[IntegerDigits[a, 2], PadRight[{0}, n+2, 1]], 2]}; NestList[nxt, {0, 0}, 15][[All, 2]] (* Harvey P. Dale, Feb 11 2023 *)
PROG
(Python)
a = 0
for n in range(1, 10):
print(a, end=', ')
a = a*(2**(n+1)) + 2**n - 1
CROSSREFS
Cf. A076131: add n 0's and one 1 to the binary representation of previous term.
Cf. A215172: add n 0's and n 1's to the binary representation of previous term.
Sequence in context: A068648 A209351 A287062 * A034787 A001408 A298643
KEYWORD
nonn,base,easy
AUTHOR
Alex Ratushnyak, Aug 05 2012
STATUS
approved