login
A076131
a(n) = 2^n*a(n-1) + 1, a(0) = 0.
6
0, 1, 5, 41, 657, 21025, 1345601, 172236929, 44092653825, 22575438758401, 23117249288602625, 47344126543058176001, 193921542320366288900097, 1588605274688440638669594625, 26027708820495411423962638336001, 852875962629993641540407732994080769
OFFSET
0,3
COMMENTS
Base-2 expansion is same as base 10 expansion of A076127.
LINKS
FORMULA
a(n) = floor(c*2^((n+1)*(n+2)/2)) where c = sum(k>=1, 1/2^A000217(k))=0.6416325... - Benoit Cloitre, Nov 01 2002
MATHEMATICA
a[0] = 0; a[n_] := 2^n a[n - 1] + 1; Table[ a[n], {n, 0, 13}]
PROG
(PARI) a(n)=if(n<0, 0, subst(Polrev(Vec(sum(k=1, n, x^(k*(k+1)/2)))), x, 2))
(PARI) a(n)=if(n<1, 0, 1+a(n-1)*2^n)
CROSSREFS
KEYWORD
easy,nonn,base
AUTHOR
Kyle Hunter (hunterk(AT)raytheon.com), Oct 31 2002
EXTENSIONS
Edited and extended by Robert G. Wilson v, Oct 31 2002
Formula corrected by Vaclav Kotesovec, Aug 11 2012
STATUS
approved