login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A190405
Decimal expansion of Sum_{k>=1} (1/2)^T(k), where T=A000217 (triangular numbers); based on column 1 of the natural number array, A000027.
8
6, 4, 1, 6, 3, 2, 5, 6, 0, 6, 5, 5, 1, 5, 3, 8, 6, 6, 2, 9, 3, 8, 4, 2, 7, 7, 0, 2, 2, 5, 4, 2, 9, 4, 3, 4, 2, 2, 6, 0, 6, 1, 5, 3, 7, 9, 5, 6, 7, 3, 9, 7, 4, 7, 8, 0, 4, 6, 5, 1, 6, 2, 2, 3, 8, 0, 1, 4, 4, 6, 0, 3, 7, 3, 3, 3, 5, 1, 7, 7, 5, 6, 0, 0, 3, 6, 4, 1, 7, 1, 6, 2, 3, 3, 5, 9, 1, 3, 3, 0, 8, 6, 0, 8, 9, 7, 3, 5, 3, 1, 6, 3, 4, 3, 6, 1, 9, 4, 6, 1
OFFSET
0,1
COMMENTS
See A190404.
Binary expansion is .1010010001... (A023531). - Rick L. Shepherd, Jan 05 2014
From Amiram Eldar, Dec 07 2020: (Start)
This constant is not a quadratic irrational (Duverney, 1995).
The Engel expansion of this constant are the powers of 2 (A000079) above 1. (End)
LINKS
Daniel Duverney, Sommes de deux carrés et irrationalité de valeurs de fonctions thêta, Comptes rendus de l'Académie des sciences, Série 1, Mathématique, Vol. 320, No. 9 (1995), pp. 1041-1044.
EXAMPLE
0.64163256065515386629...
MATHEMATICA
RealDigits[EllipticTheta[2, 0, 1/Sqrt[2]]/2^(7/8) - 1, 10, 120] // First (* Jean-François Alcover, Feb 12 2013 *)
RealDigits[Total[(1/2)^Accumulate[Range[50]]], 10, 120][[1]] (* Harvey P. Dale, Oct 18 2013 *)
(* See also A190404 *)
PROG
(Sage)
def A190405(b): # Generate the constant with b bits of precision
return N(sum([(1/2)^(j*(j+1)/2) for j in range(1, b)]), b)
A190405(409) # Danny Rorabaugh, Mar 25 2015
(PARI) th2(x)=2*x^.25 + 2*suminf(n=1, x^(n+1/2)^2)
th2(sqrt(.5))/2^(7/8)-1 \\ Charles R Greathouse IV, Jun 06 2016
CROSSREFS
A190404: (1/2)(1 + Sum_{k>=1} (1/2)^T(k)), where T = A000217 (triangular numbers).
A190405: Sum_{k>=1} (1/2)^T(k), where T = A000217 (triangular numbers).
A190406: Sum_{k>=1} (1/2)^S(k-1), where S = A001844 (centered square numbers).
A190407: Sum_{k>=1} (1/2)^V(k), where V = A058331 (1 + 2*k^2).
Cf. A000079.
Sequence in context: A259620 A362189 A299998 * A180659 A309222 A324034
KEYWORD
nonn,cons,easy
AUTHOR
Clark Kimberling, May 10 2011
STATUS
approved