login
A190405
Decimal expansion of Sum_{k>=1} (1/2)^T(k), where T=A000217 (triangular numbers); based on column 1 of the natural number array, A000027.
8
6, 4, 1, 6, 3, 2, 5, 6, 0, 6, 5, 5, 1, 5, 3, 8, 6, 6, 2, 9, 3, 8, 4, 2, 7, 7, 0, 2, 2, 5, 4, 2, 9, 4, 3, 4, 2, 2, 6, 0, 6, 1, 5, 3, 7, 9, 5, 6, 7, 3, 9, 7, 4, 7, 8, 0, 4, 6, 5, 1, 6, 2, 2, 3, 8, 0, 1, 4, 4, 6, 0, 3, 7, 3, 3, 3, 5, 1, 7, 7, 5, 6, 0, 0, 3, 6, 4, 1, 7, 1, 6, 2, 3, 3, 5, 9, 1, 3, 3, 0, 8, 6, 0, 8, 9, 7, 3, 5, 3, 1, 6, 3, 4, 3, 6, 1, 9, 4, 6, 1
OFFSET
0,1
COMMENTS
See A190404.
Binary expansion is .1010010001... (A023531). - Rick L. Shepherd, Jan 05 2014
From Amiram Eldar, Dec 07 2020: (Start)
This constant is not a quadratic irrational (Duverney, 1995).
The Engel expansion of this constant are the powers of 2 (A000079) above 1. (End)
LINKS
Daniel Duverney, Sommes de deux carrés et irrationalité de valeurs de fonctions thêta, Comptes rendus de l'Académie des sciences, Série 1, Mathématique, Vol. 320, No. 9 (1995), pp. 1041-1044.
EXAMPLE
0.64163256065515386629...
MATHEMATICA
RealDigits[EllipticTheta[2, 0, 1/Sqrt[2]]/2^(7/8) - 1, 10, 120] // First (* Jean-François Alcover, Feb 12 2013 *)
RealDigits[Total[(1/2)^Accumulate[Range[50]]], 10, 120][[1]] (* Harvey P. Dale, Oct 18 2013 *)
(* See also A190404 *)
PROG
(Sage)
def A190405(b): # Generate the constant with b bits of precision
return N(sum([(1/2)^(j*(j+1)/2) for j in range(1, b)]), b)
A190405(409) # Danny Rorabaugh, Mar 25 2015
(PARI) th2(x)=2*x^.25 + 2*suminf(n=1, x^(n+1/2)^2)
th2(sqrt(.5))/2^(7/8)-1 \\ Charles R Greathouse IV, Jun 06 2016
CROSSREFS
A190404: (1/2)(1 + Sum_{k>=1} (1/2)^T(k)), where T = A000217 (triangular numbers).
A190405: Sum_{k>=1} (1/2)^T(k), where T = A000217 (triangular numbers).
A190406: Sum_{k>=1} (1/2)^S(k-1), where S = A001844 (centered square numbers).
A190407: Sum_{k>=1} (1/2)^V(k), where V = A058331 (1 + 2*k^2).
Cf. A000079.
Sequence in context: A259620 A362189 A299998 * A180659 A309222 A324034
KEYWORD
nonn,cons,easy
AUTHOR
Clark Kimberling, May 10 2011
STATUS
approved