login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A190403
Number n for which sigma(n)=sigma(n'), where sigma is the sum of divisors and n' the arithmetic derivative of n.
4
4, 27, 60, 84, 132, 140, 204, 220, 228, 260, 270, 340, 372, 378, 444, 492, 564, 572, 580, 620, 644, 702, 708, 740, 804, 812, 820, 836, 860, 884, 918, 945, 1026, 1068, 1180, 1242, 1276, 1284, 1292, 1308, 1316, 1364, 1420, 1460, 1484, 1485, 1508, 1564, 1566
OFFSET
1,1
LINKS
MAPLE
with(numtheory);
P:=proc(i)
local f, n, p, pfs;
for n from 1 to i do
pfs:=ifactors(n)[2];
f:=n*add(op(2, p)/op(1, p), p=pfs);
if sigma(n)=sigma(f) then print(n); fi;
od;
end:
P(1000);
MATHEMATICA
d[0] = d[1] = 0; d[n_] := n*Total[f = FactorInteger[n]; f[[All, 2]]/f[[All, 1]] ]; Reap[For[n = 1, n < 2000, n++, If[DivisorSigma[1, n] == DivisorSigma[1, d[n]], Sow[n]]]][[2, 1]] (* Jean-François Alcover, Apr 22 2015 *)
PROG
(Python)
from sympy import factorint, totient
A190402 = [n for n in range(2, 10**3) if totient(int(sum([n*e/p for p, e in factorint(n).items()]))) == totient(n)] # Chai Wah Wu, Aug 21 2014
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Paolo P. Lava, May 10 2011
STATUS
approved