login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number n for which sigma(n)=sigma(n'), where sigma is the sum of divisors and n' the arithmetic derivative of n.
4

%I #16 Apr 22 2015 10:37:42

%S 4,27,60,84,132,140,204,220,228,260,270,340,372,378,444,492,564,572,

%T 580,620,644,702,708,740,804,812,820,836,860,884,918,945,1026,1068,

%U 1180,1242,1276,1284,1292,1308,1316,1364,1420,1460,1484,1485,1508,1564,1566

%N Number n for which sigma(n)=sigma(n'), where sigma is the sum of divisors and n' the arithmetic derivative of n.

%H Nathaniel Johnston, <a href="/A190403/b190403.txt">Table of n, a(n) for n = 1..10000</a>

%p with(numtheory);

%p P:=proc(i)

%p local f,n,p,pfs;

%p for n from 1 to i do

%p pfs:=ifactors(n)[2];

%p f:=n*add(op(2,p)/op(1,p),p=pfs);

%p if sigma(n)=sigma(f) then print(n); fi;

%p od;

%p end:

%p P(1000);

%t d[0] = d[1] = 0; d[n_] := n*Total[f = FactorInteger[n]; f[[All, 2]]/f[[All, 1]] ]; Reap[For[n = 1, n < 2000, n++, If[DivisorSigma[1, n] == DivisorSigma[1, d[n]], Sow[n]]]][[2, 1]] (* _Jean-François Alcover_, Apr 22 2015 *)

%o (Python)

%o from sympy import factorint, totient

%o A190402 = [n for n in range(2,10**3) if totient(int(sum([n*e/p for p,e in factorint(n).items()]))) == totient(n)] # _Chai Wah Wu_, Aug 21 2014

%Y Cf. A000203, A003415, A189057, A190402.

%K nonn,easy

%O 1,1

%A _Paolo P. Lava_, May 10 2011