login
A347671
a(n) = n^n mod 100.
0
1, 1, 4, 27, 56, 25, 56, 43, 16, 89, 0, 11, 56, 53, 16, 75, 16, 77, 24, 79, 0, 21, 84, 67, 76, 25, 76, 3, 36, 69, 0, 31, 76, 13, 36, 75, 36, 17, 4, 59, 0, 41, 64, 7, 96, 25, 96, 63, 56, 49, 0, 51, 96, 73, 56, 75, 56, 57, 84, 39, 0, 61, 44, 47, 16, 25, 16, 23
OFFSET
0,3
LINKS
Index entries for linear recurrences with constant coefficients, signature (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1).
FORMULA
For n >= 101, a(n) = a(n-100), i.e., cyclic with period A174824(100) = 100, disregarding a(0). - Michael S. Branicky, Sep 26 2021
MATHEMATICA
Table[PowerMod[n, n, 100], {n, 0, 70}] (* Harvey P. Dale, Aug 13 2023 *)
PROG
(Python)
def a(n): return pow(n, n, 100)
print([a(n) for n in range(101)]) # Michael S. Branicky, Sep 26 2021
CROSSREFS
Cf. A000312 (n^n), A056849 (mod 10), A174824.
Sequence in context: A054411 A051506 A370492 * A033663 A218629 A190403
KEYWORD
nonn,base,easy
AUTHOR
John Bibby, Sep 10 2021
STATUS
approved