login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A076127
n-th term is binary string of length t_n with 1's at positions t_i, where t_n = n-th triangular number.
2
0, 1, 101, 101001, 1010010001, 101001000100001, 101001000100001000001, 1010010001000010000010000001, 101001000100001000001000000100000001, 101001000100001000001000000100000001000000001
OFFSET
0,3
FORMULA
if(n==0), a(0)=0; else a(n)=10^n*a(n-1)+1
EXAMPLE
For example, the first 4 strings are: '1' (length 1, nonzero index 1), '101' (length 3, nonzero indices 1,3), '101001' (length 6, nonzero indices 1,3,6) '1010010001' (length 10, nonzero indices 1,3,6,10)
MATHEMATICA
f[n_] := Block[{a = {1}}, Do[a = Join[a, Table[0, {i}], {1}], {i, 1, n}]; FromDigits[a]]; Table[ f[n], {n, 0, 8}]
PROG
(PARI) a(n)=if(n<1, 0, 1+a(n-1)*10^n)
(PARI) a(n)=subst( Polrev( Vec( sum(k=1, n, x^(k*(k+1)/2)))), x, 10)
(MATLAB) function ans=bstn(n) if(n==0), ans=0; else, ans=10^n*bstn(n-1)
CROSSREFS
Sequence in context: A261881 A262633 A261966 * A180053 A138721 A068659
KEYWORD
easy,nonn,base
AUTHOR
Kyle Hunter (hunterk(AT)raytheon.com), Oct 31 2002
EXTENSIONS
Edited and extended by Robert G. Wilson v, Oct 31 2002
STATUS
approved