login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A034787
a(n) = n-th sextic factorial number divided by 5.
11
1, 11, 187, 4301, 124729, 4365515, 178986115, 8412347405, 445854412465, 26305410335435, 1709851671803275, 121399468698032525, 9347759089748504425, 775864004449125867275, 69051896395972202187475, 6559930157617359207810125, 662552945919353279988822625
OFFSET
1,2
LINKS
FORMULA
5*a(n) = (6*n-1)(!^6) = Product_{j=1..n} (6*j-1) = (6*n)!/(3^(2*n)*2^(2*n+1)*(2*n)!*A008542(n)*A007559(n)*A034000(n)).
E.g.f.: (-1 + (1-6*x)^(-5/6))/5.
a(n) ~ sqrt(2*Pi) * 6/(5*Gamma(5/6)) * n^(4/3) * (6*n/e)^n * (1 + (61/72)/n + ...}. - Joe Keane (jgk(AT)jgk.org), Nov 24 2001
D-finite with recurrence: a(n) +(-6*n+1)*a(n-1)=0. - R. J. Mathar, Feb 24 2020
Sum_{n>=1} 1/a(n) = 5*(e/6)^(1/6)*(Gamma(5/6) - Gamma(5/6, 1/6)). - Amiram Eldar, Dec 18 2022
MAPLE
seq( mul(6*j-1, j=1..n)/5, n=1..20); # G. C. Greubel, Nov 11 2019
MATHEMATICA
Table[6^n*Pochhammer[5/6, n]/5, {n, 20}] (* G. C. Greubel, Nov 11 2019 *)
With[{nn=20}, CoefficientList[Series[(-1+(1-6x)^(-5/6))/5, {x, 0, nn}], x] Range[0, nn]!] (* Harvey P. Dale, Dec 21 2024 *)
PROG
(PARI) vector(20, n, prod(j=1, n, 6*j-1)/5 ) \\ G. C. Greubel, Nov 11 2019
(Magma) [(&*[6*j-1: j in [1..n]])/5: n in [1..20]]; // G. C. Greubel, Nov 11 2019
(Sage) [product( (6*j-1) for j in (1..n))/5 for n in (1..20)] # G. C. Greubel, Nov 11 2019
(GAP) List([1..20], n-> Product([1..n], j-> 6*j-1)/5 ); # G. C. Greubel, Nov 11 2019
CROSSREFS
KEYWORD
easy,nonn
STATUS
approved