

A216258


Numbers n such that 4n is a partition number.


11



14, 44, 198, 609, 1401, 112819, 178805, 207955, 325039, 580880, 1021992, 1772375, 2029566, 3033041, 3949119, 6635915, 23167430, 29528576, 37549534, 47642323, 96069084, 120875711, 135486560, 190250539, 212844157, 297227062, 331927519, 461087390, 572830228
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


LINKS



FORMULA



EXAMPLE

14 is in the sequence because 4*14 = 56 and 56 is a partition number: p(11) = A000041(11) = 56.


MATHEMATICA

Select[PartitionsP[Range[300]], Mod[#, 4] == 0 &]/4 (* T. D. Noe, May 05 2013 *)


CROSSREFS

Cf. A000041, A213179, A213365, A217725, A217726, A222175, A222178, A222179, A225317, A225323, A225324.


KEYWORD

nonn


AUTHOR



EXTENSIONS



STATUS

approved



