login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A379032
Numbers k such that k and k+1 have an equal sum of modified exponential divisors: A241405(k) = A241405(k+1).
1
14, 44, 957, 1334, 1485, 1634, 1652, 2204, 2685, 3195, 3451, 3956, 4136, 5547, 8495, 8636, 8907, 9844, 11515, 12256, 14876, 15608, 19491, 20145, 20155, 27519, 27643, 33998, 35235, 36575, 38180, 41265, 41547, 42818, 45716, 48364, 74918, 79316, 79826, 79833, 84134
OFFSET
1,1
LINKS
Amiram Eldar, Table of n, a(n) for n = 1..1918 (terms below 10^10)
MATHEMATICA
f[p_, e_] := DivisorSum[e + 1, p^(# - 1) &]; mesigma[1] = 1; mesigma[n_] := mesigma[n] = Times @@ f @@@ FactorInteger[n]; Select[Range[10^5], mesigma[#] == mesigma[#+1] &]
PROG
(PARI) mesigma(n) = {my(f=factor(n)); prod(i=1, #f~, sumdiv(f[i, 2]+1, d, f[i, 1]^(d-1))); }
lista(kmax) = {my(m1 = 1, m2); for(k = 2, kmax, m2 = mesigma(k); if(m1 == m2, print1(k-1, ", ")); m1 = m2); }
CROSSREFS
Cf. A241405.
Similar sequences: A002961, A064115, A064125, A293183, A306985.
Sequence in context: A215199 A375882 A216258 * A064348 A206215 A328243
KEYWORD
nonn,new
AUTHOR
Amiram Eldar, Dec 14 2024
STATUS
approved