login
A216257
a(n) = 840*n^2 - 23100*n + 86861.
1
86861, 64601, 44021, 25121, 7901, -7639, -21499, -33679, -44179, -52999, -60139, -65599, -69379, -71479, -71899, -70639, -67699, -63079, -56779, -48799, -39139, -27799, -14779, -79, 16301, 34361, 54101, 75521, 98621, 123401, 149861, 178001, 207821, 239321, 272501
OFFSET
0,1
COMMENTS
|a(n)| are distinct primes for 0 <= n <= 32.
The values of this polynomial are never divisible by a prime less than 79.
All terms are congruent to 1 (mod 20).
LINKS
Arkadiusz Wesolowski, Table of n, a(n) for n = 0..1000
Eric Weisstein's World of Mathematics, Prime-Generating Polynomial.
FORMULA
G.f.: (86861 - 195982*x + 110801*x^2)/(1-x)^3.
From Elmo R. Oliveira, Feb 10 2025: (Start)
E.g.f.: exp(x)*(86861 - 22260*x + 840*x^2).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2. (End)
MAPLE
seq(840*n^2-23100*n+86861, n=0..34);
MATHEMATICA
Table[840*n^2 - 23100*n + 86861, {n, 0, 34}]
PROG
(Magma) [ 840*n^2-23100*n+86861 : n in [0..34]]
(PARI) for(n=0, 34, print1(840*n^2-23100*n+86861, ", "))
CROSSREFS
KEYWORD
easy,sign,changed
AUTHOR
STATUS
approved