login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A216255
Triangle read by rows: T(n,k) is the number of labeled rooted trees of height at most 2 that have exactly k nodes at a distance 2 from the root; n>=1, 0<=k<=n-1.
1
1, 2, 0, 3, 6, 0, 4, 24, 12, 0, 5, 60, 120, 20, 0, 6, 120, 540, 480, 30, 0, 7, 210, 1680, 3780, 1680, 42, 0, 8, 336, 4200, 17920, 22680, 5376, 56, 0, 9, 504, 9072, 63000, 161280, 122472, 16128, 72, 0, 10, 720, 17640, 181440, 787500, 1290240, 612360, 46080, 90, 0
OFFSET
1,2
COMMENTS
Row sums = A052512.
Column k=1: A007531.
LINKS
FORMULA
E.g.f.: x*exp(x*exp(y*x)).
T(n,k) = n*C(n-1,k)*(n-k-1)^k. - Alois P. Heinz, Mar 15 2013
EXAMPLE
1;
2, 0;
3, 6, 0;
4, 24, 12, 0;
5, 60, 120, 20, 0;
6, 120, 540, 480, 30, 0;
7, 210, 1680, 3780, 1680, 42, 0;
8, 336, 4200, 17920, 22680, 5376, 56, 0;
9, 504, 9072, 63000, 161280, 122472, 16128, 72, 0;
10, 720, 17640, 181440, 787500, 1290240, 612360, 46080, 90, 0;
T(4,1) = 24 because there is only one unlabeled tree on 4 nodes with exactly 1 node at distance two from the root. It has 24 labelings.
.......o......
....../.\.....
.....o...o....
..../.........
...o..........
MAPLE
T:= (n, k)-> n*binomial(n-1, k)*(n-k-1)^k:
seq(seq(T(n, k), k=0..n-1), n=1..12); # Alois P. Heinz, Mar 15 2013
MATHEMATICA
nn=10; a=NestList[x Exp[#]&, y x, nn]; f[list_]:=Select[list, #>0&]; Map[f, Range[0, nn]!CoefficientList[Series[a[[3]], {x, 0, nn}], {x, y}]]//Grid
CROSSREFS
Sequence in context: A155800 A276658 A079510 * A362788 A262256 A011120
KEYWORD
nonn,tabl
AUTHOR
Geoffrey Critzer, Mar 15 2013
STATUS
approved