login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A362788
Triangle read by rows, T(n, k) = RisingFactorial(n - k, k) * Stirling2(n - k, k), for n >= 0 and 0 <= k <= n//2, where '//' denotes integer division.
3
1, 0, 0, 1, 0, 2, 0, 3, 6, 0, 4, 36, 0, 5, 140, 60, 0, 6, 450, 720, 0, 7, 1302, 5250, 840, 0, 8, 3528, 30240, 16800, 0, 9, 9144, 151704, 196560, 15120, 0, 10, 22950, 695520, 1764000, 453600, 0, 11, 56210, 2994750, 13471920, 7761600, 332640
OFFSET
0,6
EXAMPLE
Triangle T(n, k) starts:
[0] 1;
[1] 0;
[2] 0, 1;
[3] 0, 2;
[4] 0, 3, 6;
[5] 0, 4, 36;
[6] 0, 5, 140, 60;
[7] 0, 6, 450, 720;
[8] 0, 7, 1302, 5250, 840;
[9] 0, 8, 3528, 30240, 16800;
MAPLE
T := (n, k) -> pochhammer(n - k, k) * Stirling2(n - k, k):
seq(seq(T(n, k), k = 0..iquo(n, 2)), n = 0..12);
PROG
(SageMath)
def A362788(n, k):
return rising_factorial(n - k, k) * stirling_number2(n - k, k)
for n in range(10):
print([A362788(n, k) for k in range(n//2 + 1)])
CROSSREFS
Cf. A052512 (row sums), A362369, A362789.
Sequence in context: A276658 A079510 A216255 * A262256 A011120 A256930
KEYWORD
nonn,tabf
AUTHOR
Peter Luschny, May 04 2023
STATUS
approved