login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A362369
Triangle read by rows, T(n, k) = binomial(n, k) * k! * Stirling2(n-k, k), for n >= 0 and 0 <= k <= n//2, where '//' denotes integer division.
2
1, 0, 0, 2, 0, 3, 0, 4, 12, 0, 5, 60, 0, 6, 210, 120, 0, 7, 630, 1260, 0, 8, 1736, 8400, 1680, 0, 9, 4536, 45360, 30240, 0, 10, 11430, 216720, 327600, 30240, 0, 11, 28050, 956340, 2772000, 831600, 0, 12, 67452, 3993000, 20207880, 13305600, 665280
OFFSET
0,4
FORMULA
From Mélika Tebni, May 10 2023: (Start)
E.g.f. of column k: (x*(exp(x)-1))^k / k!.
Sum_{k=0..n-1} (-1)^(n+k-1)*T(n+k-1, k) = A000169(n), for n > 0. (End)
EXAMPLE
Triangle T(n, k) starts:
[0] 1;
[1] 0;
[2] 0, 2;
[3] 0, 3;
[4] 0, 4, 12;
[5] 0, 5, 60;
[6] 0, 6, 210, 120;
[7] 0, 7, 630, 1260;
[8] 0, 8, 1736, 8400, 1680;
[9] 0, 9, 4536, 45360, 30240;
MAPLE
T := (n, k) -> binomial(n, k) * k! * Stirling2(n-k, k):
seq(seq(T(n, k), k = 0..iquo(n, 2)), n = 0..9);
# second program:
egf := k-> (x*(exp(x)-1))^k / k!:
A362369 := (n, k)-> n! * coeff(series(egf(k), x, n+1), x, n):
seq(print(seq(A362369(n, k), k=0..iquo(n, 2))), n=0..12); # Mélika Tebni, May 10 2023
PROG
(SageMath)
def A362369(n, k):
return binomial(n, k) * factorial(k) * stirling_number2(n - k, k)
for n in range(10):
print([A362369(n, k) for k in range(n//2 + 1)])
CROSSREFS
Cf. A000169, A052506 (row sums), A362788, A362789.
Sequence in context: A357475 A066682 A239968 * A320311 A240140 A240141
KEYWORD
nonn,tabf
AUTHOR
Peter Luschny, May 04 2023
STATUS
approved