login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A362370
Triangle read by rows. T(n, k) = ([x^k] P(n, x)) // k! where P(n, x) = Sum_{k=1..n} P(n - k, x) * x if n >= 1 and P(0, x) = 1. The notation 's // t' means integer division and is a shortcut for 'floor(s/t)'.
1
1, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 2, 1, 0, 0, 0, 1, 2, 1, 0, 0, 0, 0, 1, 3, 2, 0, 0, 0, 0, 0, 1, 3, 3, 1, 0, 0, 0, 0, 0, 1, 4, 4, 2, 0, 0, 0, 0, 0, 0, 1, 4, 6, 3, 1, 0, 0, 0, 0, 0, 0, 1, 5, 7, 5, 1, 0, 0, 0, 0, 0, 0, 0, 1, 5, 9, 6, 2, 0, 0, 0, 0, 0, 0, 0
OFFSET
0,18
COMMENTS
Row n gives the coefficients of the set partition polynomials of type m = 0 (the base case). The sequence of these polynomial sequences starts: this sequence, A048993, A156289, A291451, A291452, ...
FORMULA
T(n, k) = floor(A097805(n, k) / k!).
EXAMPLE
Triangle T(n, k) starts:
[0] [1]
[1] [0, 1]
[2] [0, 1, 0]
[3] [0, 1, 1, 0]
[4] [0, 1, 1, 0, 0]
[5] [0, 1, 2, 1, 0, 0]
[6] [0, 1, 2, 1, 0, 0, 0]
[7] [0, 1, 3, 2, 0, 0, 0, 0]
[8] [0, 1, 3, 3, 1, 0, 0, 0, 0]
[9] [0, 1, 4, 4, 2, 0, 0, 0, 0, 0]
MAPLE
T := (n, k) -> iquo(binomial(n - 1, k - 1), k!):
seq(print(seq(T(n, k), k = 0..n)), n = 0..9);
PROG
(SageMath)
R = PowerSeriesRing(ZZ, "x")
x = R.gen().O(33)
@cached_function
def p(n) -> Polynomial:
if n == 0: return R(1)
return sum(p(n - k) * x for k in range(1, n + 1))
def A362370_row(n) -> list[int]:
L = p(n).list()
return [L[k] // factorial(k) for k in range(n + 1)]
for n in range(10):
print(A362370_row(n))
CROSSREFS
Cf. A097805, A362307 (row sums).
Cf. the family of partition polynomials: this sequence (m=0), A048993 (m=1), A156289 (m=2), A291451 (m=3), A291452 (m=4).
Sequence in context: A352193 A024944 A304871 * A117907 A300069 A284586
KEYWORD
nonn,tabl
AUTHOR
Peter Luschny, Apr 17 2023
STATUS
approved