login
A304871
Triangle read by rows: T(n, k) gives the number of partitions (d1,d2,...,dm) of n such that k = d1/1 <= d2/2 <= ... <= dm/m for 1 <= k <= n.
2
1, 0, 1, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 2, 1, 0, 0, 0, 1, 2, 1, 0, 0, 0, 0, 1, 2, 1, 0, 0, 0, 0, 0, 1, 3, 1, 1, 0, 0, 0, 0, 0, 1, 4, 1, 1, 0, 0, 0, 0, 0, 0, 1, 5, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 5, 2, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 6, 2, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1
OFFSET
1,16
LINKS
EXAMPLE
The partitions (d1,d2,...,dm) of 9 such that 1 = d1/1 <= d2/2 <= ... <= dm/m are (1, 8), (1, 2, 6) and (1, 3, 5). So T(9, 1) = 3.
First few rows are:
1;
0, 1;
1, 0, 1;
1, 0, 0, 1;
1, 0, 0, 0, 1;
2, 1, 0, 0, 0, 1;
2, 1, 0, 0, 0, 0, 1;
2, 1, 0, 0, 0, 0, 0, 1;
3, 1, 1, 0, 0, 0, 0, 0, 1;
4, 1, 1, 0, 0, 0, 0, 0, 0, 1;
CROSSREFS
Row sums give A053282.
Cf. A304869.
Sequence in context: A064662 A352193 A024944 * A362370 A117907 A300069
KEYWORD
nonn,tabl
AUTHOR
Seiichi Manyama, May 20 2018
STATUS
approved