login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A304868
Numbers x satisfying x == 1 (mod 4) or x == 14, 26, 30 (mod 32).
1
1, 5, 9, 13, 14, 17, 21, 25, 26, 29, 30, 33, 37, 41, 45, 46, 49, 53, 57, 58, 61, 62, 65, 69, 73, 77, 78, 81, 85, 89, 90, 93, 94, 97, 101, 105, 109, 110, 113, 117, 121, 122, 125, 126, 129, 133, 137, 141, 142, 145, 149, 153, 154, 157, 158, 161, 165, 169, 173, 174, 177
OFFSET
1,2
COMMENTS
The sum of two distinct terms of this sequence is never a square.
Sequence has density 11/32, the maximal density that can be attained with such a sequence.
REFERENCES
J. P. Massias, Sur les suites dont les sommes des termes 2 à 2 ne sont pas des carrés, Publications du département de mathématiques de Limoges, 1982.
LINKS
J. C. Lagarias, A. M. Odlyzko, J. B. Shearer, On the density of sequences of integers the sum of no two of which is a square. I. Arithmetic progressions, Journal of Combinatorial Theory. Series A, 33 (1982), pp. 167-185.
FORMULA
From Colin Barker, May 20 2018: (Start)
G.f.: x*(1 + 4*x + 4*x^2 + 4*x^3 + x^4 + 3*x^5 + 4*x^6 + 4*x^7 + x^8 + 3*x^9 + x^10 + 2*x^11) / ((1 - x)^2*(1 + x + x^2 + x^3 + x^4 + x^5 + x^6 + x^7 + x^8 + x^9 + x^10)).
a(n) = a(n-1) + a(n-11) - a(n-12) for n>12.
(End)
PROG
(PARI) isok(n) = ((n%4)==1) || ((n%32)==14) || ((n%32)==26) || ((n%32)==30);
(PARI) Vec(x*(1 + 4*x + 4*x^2 + 4*x^3 + x^4 + 3*x^5 + 4*x^6 + 4*x^7 + x^8 + 3*x^9 + x^10 + 2*x^11) / ((1 - x)^2*(1 + x + x^2 + x^3 + x^4 + x^5 + x^6 + x^7 + x^8 + x^9 + x^10)) + O(x^40)) \\ Colin Barker, May 20 2018
CROSSREFS
Cf. A016777 (another such sequence), A210380.
Sequence in context: A241987 A189464 A130333 * A080579 A325274 A303264
KEYWORD
nonn,easy
AUTHOR
Michel Marcus, May 20 2018
STATUS
approved