login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A362789
Triangle read by rows. T(n, k) = FallingFactorial(n - k, k) * Stirling2(n - k, k), for n >= 0 and 0 <= k <= n//2, where '//' denotes integer division.
4
1, 0, 0, 1, 0, 2, 0, 3, 2, 0, 4, 18, 0, 5, 84, 6, 0, 6, 300, 144, 0, 7, 930, 1500, 24, 0, 8, 2646, 10800, 1200, 0, 9, 7112, 63210, 23400, 120, 0, 10, 18360, 324576, 294000, 10800, 0, 11, 45990, 1524600, 2857680, 352800, 720, 0, 12, 112530, 6717600, 23496480, 7056000, 105840
OFFSET
0,6
EXAMPLE
Triangle T(n, k) starts:
[0] 1;
[1] 0;
[2] 0, 1;
[3] 0, 2;
[4] 0, 3, 2;
[5] 0, 4, 18;
[6] 0, 5, 84, 6;
[7] 0, 6, 300, 144;
[8] 0, 7, 930, 1500, 24;
[9] 0, 8, 2646, 10800, 1200;
MAPLE
fallingFactorial := (x, n) -> (-1)^n * pochhammer(-x, n):
T := (n, k) -> fallingFactorial(n - k, k) * Stirling2(n - k, k):
seq(seq(T(n, k), k = 0..iquo(n, 2)), n = 0..12);
PROG
(SageMath)
def A362789(n, k):
return falling_factorial(n - k, k) * stirling_number2(n - k, k)
for n in range(10):
print([A362789(n, k) for k in range(n//2 + 1)])
CROSSREFS
Cf. A362790 (row sums), A362788, A362769.
Sequence in context: A143324 A287416 A097418 * A154752 A271868 A194354
KEYWORD
nonn,tabf
AUTHOR
Peter Luschny, May 04 2023
STATUS
approved