Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #7 May 04 2023 08:57:01
%S 1,0,0,1,0,2,0,3,2,0,4,18,0,5,84,6,0,6,300,144,0,7,930,1500,24,0,8,
%T 2646,10800,1200,0,9,7112,63210,23400,120,0,10,18360,324576,294000,
%U 10800,0,11,45990,1524600,2857680,352800,720,0,12,112530,6717600,23496480,7056000,105840
%N Triangle read by rows. T(n, k) = FallingFactorial(n - k, k) * Stirling2(n - k, k), for n >= 0 and 0 <= k <= n//2, where '//' denotes integer division.
%e Triangle T(n, k) starts:
%e [0] 1;
%e [1] 0;
%e [2] 0, 1;
%e [3] 0, 2;
%e [4] 0, 3, 2;
%e [5] 0, 4, 18;
%e [6] 0, 5, 84, 6;
%e [7] 0, 6, 300, 144;
%e [8] 0, 7, 930, 1500, 24;
%e [9] 0, 8, 2646, 10800, 1200;
%p fallingFactorial := (x, n) -> (-1)^n * pochhammer(-x, n):
%p T := (n, k) -> fallingFactorial(n - k, k) * Stirling2(n - k, k):
%p seq(seq(T(n, k), k = 0..iquo(n,2)), n = 0..12);
%o (SageMath)
%o def A362789(n, k):
%o return falling_factorial(n - k, k) * stirling_number2(n - k, k)
%o for n in range(10):
%o print([A362789(n, k) for k in range(n//2 + 1)])
%Y Cf. A362790 (row sums), A362788, A362769.
%K nonn,tabf
%O 0,6
%A _Peter Luschny_, May 04 2023