login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A271868
G.f. A(x,y) satisfies: A(x,y) = x + A( x^2 + x*y*A(x,y)^2, y).
1
1, 1, 0, 1, 1, 2, 0, 3, 2, 0, 7, 7, 0, 4, 21, 5, 1, 6, 46, 29, 0, 9, 65, 114, 15, 0, 13, 113, 304, 122, 0, 8, 169, 649, 582, 50, 0, 19, 229, 1311, 1931, 514, 0, 14, 326, 2289, 5235, 2915, 177, 0, 4, 511, 3800, 12353, 11667, 2179, 0, 8, 528, 6365, 25663, 37605, 14439, 651, 1, 14, 602, 9933, 50117, 102960, 67567, 9313, 0, 17, 779, 13887, 93176, 249123, 251277, 70851, 2461, 0, 27, 822, 19953, 161702, 554778, 787255, 378828, 40107, 0, 20, 985, 26748, 267548, 1149904, 2169902, 1596301, 344833, 9503, 0, 33, 1423, 33547, 428642, 2237223, 5425404, 5639060, 2072343, 173817, 0, 22, 1696, 45001, 644977, 4148095, 12510282, 17417722, 9761246, 1666931, 37325, 0, 8, 1951, 60518, 941911, 7327901, 27001551, 48380186, 38383316, 11121058, 757166
OFFSET
1,6
FORMULA
G.f. A(x,2) = C(x) = x + C(x^2 + 2*x*C(x)^2) where C(x) = x + C(x)^2 is a g.f. of the Catalan numbers (A000108).
EXAMPLE
Given A(x,y) = x + A( x^2 + x*y*A(x,y)^2, y), then the coefficient of x^n in A(x,y) begins:
n=1: 1;
n=2: 1;
n=3: y;
n=4: 1 + 2*y;
n=5: 3*y + 2*y^2;
n=6: 7*y + 7*y^2;
n=7: 4*y + 21*y^2 + 5*y^3;
n=8: 1 + 6*y + 46*y^2 + 29*y^3;
n=9: 9*y + 65*y^2 + 114*y^3 + 15*y^4;
n=10: 13*y + 113*y^2 + 304*y^3 + 122*y^4;
n=11: 8*y + 169*y^2 + 649*y^3 + 582*y^4 + 50*y^5;
n=12: 19*y + 229*y^2 + 1311*y^3 + 1931*y^4 + 514*y^5;
n=13: 14*y + 326*y^2 + 2289*y^3 + 5235*y^4 + 2915*y^5 + 177*y^6;
n=14: 4*y + 511*y^2 + 3800*y^3 + 12353*y^4 + 11667*y^5 + 2179*y^6;
n=15: 8*y + 528*y^2 + 6365*y^3 + 25663*y^4 + 37605*y^5 + 14439*y^6 + 651*y^7;
n=16: 1 + 14*y + 602*y^2 + 9933*y^3 + 50117*y^4 + 102960*y^5 + 67567*y^6 + 9313*y^7;
n=17: 17*y + 779*y^2 + 13887*y^3 + 93176*y^4 + 249123*y^5 + 251277*y^6 + 70851*y^7 + 2461*y^8;
n=18: 27*y + 822*y^2 + 19953*y^3 + 161702*y^4 + 554778*y^5 + 787255*y^6 + 378828*y^7 + 40107*y^8;
n=19: 20*y + 985*y^2 + 26748*y^3 + 267548*y^4 + 1149904*y^5 + 2169902*y^6 + 1596301*y^7 + 344833*y^8 + 9503*y^9;
n=20: 33*y + 1423*y^2 + 33547*y^3 + 428642*y^4 + 2237223*y^5 + 5425404*y^6 + 5639060*y^7 + 2072343*y^8 + 173817*y^9; ...
where the coefficients of x^n at y=2 yield the Catalan sequence (A000108)
and the coefficients of x^n at y=1 yield sequence A271867.
This table begins:
1: [1],
2: [1],
3: [0, 1],
4: [1, 2],
5: [0, 3, 2],
6: [0, 7, 7],
7: [0, 4, 21, 5],
8: [1, 6, 46, 29],
9: [0, 9, 65, 114, 15],
10: [0, 13, 113, 304, 122],
11: [0, 8, 169, 649, 582, 50],
12: [0, 19, 229, 1311, 1931, 514],
13: [0, 14, 326, 2289, 5235, 2915, 177],
14: [0, 4, 511, 3800, 12353, 11667, 2179],
15: [0, 8, 528, 6365, 25663, 37605, 14439, 651],
16: [1, 14, 602, 9933, 50117, 102960, 67567, 9313],
17: [0, 17, 779, 13887, 93176, 249123, 251277, 70851, 2461],
18: [0, 27, 822, 19953, 161702, 554778, 787255, 378828, 40107],
19: [0, 20, 985, 26748, 267548, 1149904, 2169902, 1596301, 344833, 9503],
20: [0, 33, 1423, 33547, 428642, 2237223, 5425404, 5639060, 2072343, 173817],
21: [0, 22, 1696, 45001, 644977, 4148095, 12510282, 17417722, 9761246, 1666931, 37325],
22: [0, 8, 1951, 60518, 941911, 7327901, 27001551, 48380186, 38383316, 11121058, 757166],
23: [0, 16, 2032, 76469, 1368689, 12325683, 55128925, 123212108, 131265572, 57914532, 8013226, 148658],
24: [0, 43, 2233, 97715, 1929992, 20063142, 106847213, 292161779, 401413381, 250837500, 58766538, 3312223],
25: [0, 26, 2676, 122275, 2671266, 31693646, 197758824, 651604747, 1120119759, 940861815, 335281883, 38344863, 598978],
26: [0, 14, 3186, 146875, 3690225, 48570293, 352082741, 1376271666, 2895874917, 3142495637, 1585770660, 306614741, 14540518],
27: [0, 28, 3332, 177768, 4955379, 73062941, 604474079, 2771307598, 7012061147, 9538931973, 6473312499, 1901935380, 182787816, 2437164],
28: [0, 4, 4347, 218560, 6494263, 107933186, 1005837512, 5347520176, 16035090718, 26718656916, 23451518737, 9753064433, 1582783800, 64024175],
29: [0, 0, 4526, 267616, 8499808, 155611109, 1631859790, 9927108488, 34865937677, 69852304346, 76953296350, 43045676583, 10605749919, 868524649, 9999912],
30: [0, 8, 3228, 330909, 11026402, 220574099, 2583126916, 17816436623, 72459675808, 171977635171, 232245199109, 168136944474, 58609642777, 8096622083, 282639031],
31: [0, 16, 3680, 378032, 14174509, 308537087, 3995815653, 31032068182, 144593007264, 401550149642, 652283763087, 593181170120, 278108736935, 58282610197, 4115397063, 41329076],
32: [1, 30, 4274, 422797, 18166709, 424609949, 6063752715, 52580292690, 278252968814, 894172441003, 1720698824242, 1919504552856, 1165137737724, 345292508754, 41094699891, 1250545089], ...
PROG
(PARI) {T(n, k) = my(A=x+x^2 +x*O(x^n)); for(i=1, n, A = x + subst(A, x, x^2 + y*x*A^2 +x*O(x^n)) ) ; polcoeff(polcoeff(A, n, x), k, y)}
for(n=1, 32, for(k=0, (n-1)\2, print1(T(n, k), ", ")); print(""))
CROSSREFS
Sequence in context: A097418 A362789 A154752 * A194354 A156776 A292108
KEYWORD
nonn,tabf
AUTHOR
Paul D. Hanna, Apr 16 2016
STATUS
approved