login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A271869
Decimal expansion of Matthews' constant C_3, an analog of Artin's constant for primitive roots.
1
0, 6, 0, 8, 2, 1, 6, 5, 5, 1, 2, 0, 3, 0, 5, 0, 8, 6, 0, 0, 5, 6, 3, 2, 2, 7, 5, 4, 6, 1, 9, 2, 0, 8, 5, 5, 4, 3, 1, 3, 3, 7, 3, 7, 3, 4, 7, 5, 7, 6, 7, 9, 4, 1, 9, 8, 2, 6, 4, 3, 4, 0, 3, 1, 5, 0, 4, 0, 8, 0, 4, 3, 5, 0, 7, 2, 1, 2, 5, 6, 1, 6, 9, 5, 8, 6, 1, 8, 8, 8, 7, 3, 4, 8, 5, 8, 6, 6, 2, 4, 6, 8, 7, 3, 4, 0
OFFSET
0,2
REFERENCES
Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 2.4 Artin's constant, p. 105.
LINKS
K. R. Matthews, A generalisation of Artin's conjecture for primitive roots, Acta arithmetica, Vol. 29, No. 2 (1976), pp. 113-146.
FORMULA
C_3 = Product_{p prime} 1 - (p^3 - (p - 1)^3)/(p^3*(p - 1)).
EXAMPLE
0.0608216551203050860056322754619208554313373734757679419826434...
MATHEMATICA
digits = 70; $MaxExtraPrecision = 1000; m0 = 2000; dm = 200; Clear[s]; LR =
LinearRecurrence[{2, 2, -6, 4, -1}, {0, 6, 0, 22, 5}, 2 m0]; r[n_Integer] := LR[[n]]; s[m_] := s[m] = NSum[-r[n] PrimeZetaP[n]/n, {n, 2, m}, NSumTerms -> 2 m0, WorkingPrecision -> digits+10] // Exp; s[m0]; s[m = m0+dm]; While[RealDigits[s[m], 10, digits][[1]] != RealDigits[ s[m-dm], 10, digits][[1]], Print[m]; m = m + dm]; Join[{0}, RealDigits[ s[m], 10, digits][[1]]]
PROG
(PARI) prodeulerrat(1 - (p^3 - (p - 1)^3)/(p^3*(p - 1))) \\ Amiram Eldar, Mar 16 2021
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
EXTENSIONS
More digits from Vaclav Kotesovec, Jun 19 2020
STATUS
approved