login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Decimal expansion of Matthews' constant C_3, an analog of Artin's constant for primitive roots.
1

%I #13 Mar 16 2021 04:06:53

%S 0,6,0,8,2,1,6,5,5,1,2,0,3,0,5,0,8,6,0,0,5,6,3,2,2,7,5,4,6,1,9,2,0,8,

%T 5,5,4,3,1,3,3,7,3,7,3,4,7,5,7,6,7,9,4,1,9,8,2,6,4,3,4,0,3,1,5,0,4,0,

%U 8,0,4,3,5,0,7,2,1,2,5,6,1,6,9,5,8,6,1,8,8,8,7,3,4,8,5,8,6,6,2,4,6,8,7,3,4,0

%N Decimal expansion of Matthews' constant C_3, an analog of Artin's constant for primitive roots.

%D Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 2.4 Artin's constant, p. 105.

%H K. R. Matthews, <a href="https://eudml.org/doc/205412">A generalisation of Artin's conjecture for primitive roots</a>, Acta arithmetica, Vol. 29, No. 2 (1976), pp. 113-146.

%F C_3 = Product_{p prime} 1 - (p^3 - (p - 1)^3)/(p^3*(p - 1)).

%e 0.0608216551203050860056322754619208554313373734757679419826434...

%t digits = 70; $MaxExtraPrecision = 1000; m0 = 2000; dm = 200; Clear[s]; LR =

%t LinearRecurrence[{2, 2, -6, 4, -1}, {0, 6, 0, 22, 5}, 2 m0]; r[n_Integer] := LR[[n]]; s[m_] := s[m] = NSum[-r[n] PrimeZetaP[n]/n, {n, 2, m}, NSumTerms -> 2 m0, WorkingPrecision -> digits+10] // Exp; s[m0]; s[m = m0+dm]; While[RealDigits[s[m], 10, digits][[1]] != RealDigits[ s[m-dm], 10, digits][[1]], Print[m]; m = m + dm]; Join[{0}, RealDigits[ s[m], 10, digits][[1]]]

%o (PARI) prodeulerrat(1 - (p^3 - (p - 1)^3)/(p^3*(p - 1))) \\ _Amiram Eldar_, Mar 16 2021

%Y Cf. A005596, A065414, A065415, A065416, A271780, A271798.

%K nonn,cons

%O 0,2

%A _Jean-François Alcover_, Apr 16 2016

%E More digits from _Vaclav Kotesovec_, Jun 19 2020