OFFSET
0,2
LINKS
OEIS Wiki, Figurate numbers
Eric Weisstein's World of Mathematics, Hexagonal Number
Index entries for linear recurrences with constant coefficients, signature (6,-15,20,-15,6,-1).
FORMULA
O.g.f.: (1 + 3*x)^2/(1 - x)^6.
E.g.f.: (30 + 330*x + 645*x^2 + 365*x^3 + 70*x^4 + 4*x^5)*exp(x)/30.
a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6).
a(n) = (n + 1)*(n + 2)*(n + 3)*(4*n^2 + 6*n + 5)/30.
MAPLE
A271870:=n->(n+1)*(n+2)*(n+3)*(4*n^2+6*n+5)/30: seq(A271870(n), n=0..50); # Wesley Ivan Hurt, Apr 20 2016
MATHEMATICA
LinearRecurrence[{6, -15, 20, -15, 6, -1}, {1, 12, 66, 236, 651, 1512}, 36]
Table[(n + 1) (n + 2) (n + 3) ((4 n^2 + 6 n + 5)/30), {n, 0, 35}]
PROG
(Magma) [(n+1)*(n+2)*(n+3)*(4*n^2+6*n+5)/30 : n in [0..40]]; // Wesley Ivan Hurt, Apr 20 2016
(PARI) a(n)=binomial(n+3, 3)*(4*n^2 + 6*n + 5)/5 \\ Charles R Greathouse IV, Jul 26 2016
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Ilya Gutkovskiy, Apr 20 2016
EXTENSIONS
a(35)=8630028 corrected by Georg Fischer, Apr 03 2019
STATUS
approved