login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A271870
Convolution of nonzero hexagonal numbers (A000384) with themselves.
4
1, 12, 66, 236, 651, 1512, 3108, 5832, 10197, 16852, 26598, 40404, 59423, 85008, 118728, 162384, 218025, 287964, 374794, 481404, 610995, 767096, 953580, 1174680, 1435005, 1739556, 2093742, 2503396, 2974791, 3514656, 4130192, 4829088, 5619537, 6510252, 7510482, 8630028
OFFSET
0,2
LINKS
OEIS Wiki, Figurate numbers
Eric Weisstein's World of Mathematics, Hexagonal Number
FORMULA
O.g.f.: (1 + 3*x)^2/(1 - x)^6.
E.g.f.: (30 + 330*x + 645*x^2 + 365*x^3 + 70*x^4 + 4*x^5)*exp(x)/30.
a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6).
a(n) = (n + 1)*(n + 2)*(n + 3)*(4*n^2 + 6*n + 5)/30.
MAPLE
A271870:=n->(n+1)*(n+2)*(n+3)*(4*n^2+6*n+5)/30: seq(A271870(n), n=0..50); # Wesley Ivan Hurt, Apr 20 2016
MATHEMATICA
LinearRecurrence[{6, -15, 20, -15, 6, -1}, {1, 12, 66, 236, 651, 1512}, 36]
Table[(n + 1) (n + 2) (n + 3) ((4 n^2 + 6 n + 5)/30), {n, 0, 35}]
PROG
(Magma) [(n+1)*(n+2)*(n+3)*(4*n^2+6*n+5)/30 : n in [0..40]]; // Wesley Ivan Hurt, Apr 20 2016
(PARI) a(n)=binomial(n+3, 3)*(4*n^2 + 6*n + 5)/5 \\ Charles R Greathouse IV, Jul 26 2016
CROSSREFS
Cf. A000384.
Cf. similar sequences of the convolution of k-gonal numbers with themselves listed in A271662.
Sequence in context: A014787 A007249 A112142 * A114243 A000972 A180392
KEYWORD
nonn,easy
AUTHOR
Ilya Gutkovskiy, Apr 20 2016
EXTENSIONS
a(35)=8630028 corrected by Georg Fischer, Apr 03 2019
STATUS
approved