login
A271798
Decimal expansion of Matthews' constant C_2, an analog of Artin's constant for primitive roots.
2
1, 4, 7, 3, 4, 9, 4, 0, 0, 0, 0, 2, 0, 0, 1, 4, 5, 8, 0, 7, 6, 8, 0, 8, 4, 3, 1, 8, 4, 7, 6, 9, 2, 5, 9, 6, 3, 9, 6, 6, 7, 1, 8, 5, 8, 1, 7, 3, 2, 7, 2, 1, 5, 8, 4, 4, 2, 0, 7, 9, 6, 1, 9, 2, 8, 5, 5, 5, 8, 3, 5, 3, 4, 0, 9, 8, 5, 5, 0, 3, 5, 5, 9, 8, 0, 7, 8, 2, 7, 1, 1, 3, 0, 1, 7, 6, 6, 1, 8, 9, 9, 4, 4, 3, 3, 6
OFFSET
0,2
REFERENCES
Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 2.4 Artin's constant, p. 105.
LINKS
K. R. Matthews, A generalisation of Artin's conjecture for primitive roots, Acta arithmetica, Vol. 29, No. 2 (1976), pp. 113-146.
FORMULA
C_2 = Product_{p prime} 1 - (p^2 - (p - 1)^2)/(p^2*(p - 1)).
Log(1 - (p^2 - (p - 1)^2)/(p^2*(p - 1))) + O(p,Infinity)^m = Sum_{n=2..m} -r(n)/(n*p^n), where r(n) = rootSum(1 - 2*x - x^2 + x^3, x^n) - 1.
EXAMPLE
0.147349400002001458076808431847692596396671858173272158442...
MATHEMATICA
digits = 66; m0 = 1000; dm = 100; Clear[s]; r[n_] := RootSum[1 - 2*# - #^2 + #^3& , #^n&] - 1; s[m_] := s[m] = NSum[-r[n] PrimeZetaP[n]/n, {n, 2, m}, NSumTerms -> m0, WorkingPrecision -> 400] // Exp; s[m0]; s[m = m0 + dm]; While[RealDigits[s[m], 10, digits][[1]] != RealDigits[s[m - dm], 10, digits][[1]], Print[m]; m = m + dm]; RealDigits[s[m]][[1]]
PROG
(PARI) prodeulerrat(1 - (p^2 - (p - 1)^2)/(p^2*(p - 1))) \\ Amiram Eldar, Mar 16 2021
CROSSREFS
Cf. A005596.
Sequence in context: A197697 A241026 A198743 * A190357 A372861 A296499
KEYWORD
nonn,cons
AUTHOR
EXTENSIONS
More digits from Vaclav Kotesovec, Jun 19 2020
STATUS
approved