|
|
A271801
|
|
Smallest composite k such that k divides (n^(k-1)-1)/(n-1), n > 1.
|
|
3
|
|
|
341, 91, 85, 217, 217, 25, 9, 91, 91, 133, 65, 85, 15, 341, 91, 9, 25, 49, 21, 221, 169, 91, 25, 91, 9, 121, 145, 15, 49, 49, 25, 85, 35, 9, 403, 133, 39, 341, 121, 21, 529, 25, 9, 133, 133, 65, 49, 25, 51, 91, 265, 9, 55, 91, 57, 25, 341, 15, 341, 91, 9, 481, 65, 33, 469, 49, 25, 35, 169, 9, 85, 65
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
2,1
|
|
COMMENTS
|
Smallest pseudoprime k to base n such that gcd(k,n-1)=1.
Theorem (R. Steuerwald, 1948): if k is a pseudoprime to base b and gcd(k,b-1)=1, then (b^k-1)/(b-1) is a pseudoprime to base b.
From Robert Israel, Apr 14 2016: (Start)
a(n) is odd.
If m == n (mod a(n)) then a(m) <= a(n).
a(n) = 9 iff n == -1 (mod 9).
a(n) = 15 iff n == -1 (mod 15) but not (mod 9).
The first case where a(n) is not a semiprime (A001358) is a(383) = 561. (End)
|
|
LINKS
|
Robert Israel, Table of n, a(n) for n = 2..10000
|
|
MAPLE
|
Comps:= remove(isprime, [seq(k, k=9..10^6, 2)]):
f:= proc(n) local k;
for k in Comps do
if (n^(k-1)-1)/(n-1) mod k = 0 then return k fi
od:
error "ran out of composites"
end proc:
seq(f(n), n=2..100); # Robert Israel, Apr 14 2016
|
|
MATHEMATICA
|
Table[SelectFirst[Range[10^3], CompositeQ@ # && Divisible[(n^(# - 1) - 1)/(n - 1), #] &], {n, 2, 73}] (* Michael De Vlieger, Apr 14 2016, Version 10 *)
|
|
PROG
|
(PARI) a(n) = {my(k = 4); while ((n^(k-1)-1)/(n-1) % k, k++; if (isprime(k), k++)); k; } \\ Michel Marcus, Apr 14 2016
|
|
CROSSREFS
|
Cf. A001358.
Sequence in context: A222927 A298908 A057598 * A322120 A250199 A271874
Adjacent sequences: A271798 A271799 A271800 * A271802 A271803 A271804
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Thomas Ordowski, Apr 14 2016
|
|
EXTENSIONS
|
More terms from Michael De Vlieger, Apr 14 2016
|
|
STATUS
|
approved
|
|
|
|