|
|
A190357
|
|
Decimal expansion of 1/4 - 2/Pi^2.
|
|
3
|
|
|
0, 4, 7, 3, 5, 7, 6, 3, 2, 7, 1, 5, 3, 2, 4, 4, 5, 7, 1, 1, 2, 2, 4, 1, 0, 7, 3, 5, 8, 0, 5, 4, 4, 7, 2, 2, 1, 9, 1, 2, 8, 2, 4, 5, 0, 6, 5, 5, 5, 0, 6, 9, 0, 2, 3, 0, 8, 7, 8, 1, 9, 3, 6, 2, 1, 1, 6, 5, 3, 7, 5, 8, 0, 7, 5, 5, 2, 9, 1, 1, 7, 6, 1, 7, 5, 8, 1, 4, 5, 2, 1, 4, 8, 7, 5, 6, 3, 2, 4, 7, 7
(list;
constant;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
COMMENTS
|
Constant given on p. 1 of Schlage-Puchta.
|
|
LINKS
|
G. C. Greubel, Table of n, a(n) for n = 0..10000
Jan-Christoph Schlage-Puchta, Sumsets avoiding squarefree integers, arXiv:1105.1305 [math.NT], May 6, 2011.
|
|
FORMULA
|
Equals (1/4) - (2/Pi^2).
|
|
EXAMPLE
|
0.047357632715324457112241...
|
|
MATHEMATICA
|
Join[{0}, RealDigits[(1/4) - (2/Pi^2), 10, 100][[1]]] (* G. C. Greubel, Apr 05 2018 *)
|
|
PROG
|
(PARI) (1/4) - (2/Pi^2) \\ G. C. Greubel, Apr 05 2018
(MAGMA) R:=RealField(100); [(1/4) - (2/Pi(R)^2)]; // G. C. Greubel, Apr 05 2018
|
|
CROSSREFS
|
Cf. A005117, A010716 (1/18), A059956 (6/Pi^2).
Sequence in context: A241026 A198743 A271798 * A296499 A199446 A100127
Adjacent sequences: A190354 A190355 A190356 * A190358 A190359 A190360
|
|
KEYWORD
|
nonn,easy,cons
|
|
AUTHOR
|
Jonathan Vos Post, May 09 2011
|
|
STATUS
|
approved
|
|
|
|