login
A292108
Iterate the map k -> (sigma(k) + phi(k))/2 starting at n; a(n) is the number of steps to reach either a fixed point or a fraction, or a(n) = -1 if neither of these two events occurs.
6
0, 0, 0, 1, 0, 1, 0, 1, 1, 1, 0, 2, 0, 3, 2, 1, 0, 1, 0, 2, 2, 1, 0, 4, 1, 2, 1, 4, 0, 2, 0, 1, 4, 3, 2, 1, 0, 3, 2, 1, 0, 9, 0, 2, 3, 1, 0, 7, 1, 1, 2, 1, 0, 8, 3, 2, 2, 1, 0, 3, 0, 8, 7, 1, 3, 2, 0, 1, 7, 6, 0, 1, 0, 3, 2, 4
OFFSET
1,12
COMMENTS
The first unknown value is a(270).
For an alternative version of this sequence, see A291914.
From Andrew R. Booker, Sep 19 2017 and Oct 03 2017: (Start)
Let f(n) = (sigma(n) + phi(n))/2. Then f(n) >= n, so the trajectory of n under f either terminates with a half-integer, reaches a fixed point, or increases monotonically. The fixed points of f are 1 and the prime numbers, and f(n) is fractional iff n>2 is a square or twice a square.
It seems likely that a(n) = -1 for all but o(x) numbers n <= x. See link for details of the argument. (End)
LINKS
Andrew R. Booker, Notes on (sigma + phi)/2
N. J. A. Sloane, Three (No, 8) Lovely Problems from the OEIS, Experimental Mathematics Seminar, Rutgers University, Oct 05 2017, Part I, Part 2, Slides. (Mentions this sequence)
N. J. A. Sloane, "A Handbook of Integer Sequences" Fifty Years Later, arXiv:2301.03149 [math.NT], 2023, p. 14.
FORMULA
a(n) = 0 if n is 1 or a prime (these are fixed points).
a(n) = 1 if n>2 is a square or twice a square, since these reach a fraction in one step.
EXAMPLE
Let f(k) = (sigma(k) + phi(k))/2. Under the action of f:
14 -> 15 -> 16 -> 39/2, taking 3 steps, so a(14) = 3.
21 -> 22 -> 23, a prime, in 2 steps, so a(21) = 2.
MATHEMATICA
With[{i = 200}, Table[-1 + Length@ NestWhileList[If[! IntegerQ@ #, -1/2, (DivisorSigma[1, #] + EulerPhi@ #)/2] &, n, Nor[! IntegerQ@ #, SameQ@ ##] &, 2, i, -1] /. k_ /; k >= i - 1 -> -1, {n, 76}]] (* Michael De Vlieger, Sep 19 2017 *)
KEYWORD
nonn
AUTHOR
STATUS
approved