|
|
A291787
|
|
Trajectory of 45 under repeated application of the map k -> A291784(k).
|
|
8
|
|
|
45, 48, 56, 60, 80, 88, 92, 94, 95, 96, 112, 120, 160, 176, 184, 188, 190, 216, 252, 324, 378, 486, 567, 594, 738, 876, 1032, 1224, 1488, 1776, 2112, 2624, 2656, 2672, 2680, 2976, 3552, 4224, 5248, 5312, 5344, 5360, 5952, 7104, 8448, 10496, 10624
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,1
|
|
COMMENTS
|
It may be that every trajectory under iteration of the map k -> A291784(k) which increases indefinitely will eventually merge with this sequence. This is certainly true for the terms 45 through 152 of A291788. - N. J. A. Sloane, Sep 24 2017
|
|
REFERENCES
|
Richard K. Guy, Unsolved Problems in Number Theory, 3rd Edition, Springer, 2004. See Section B41, p. 147.
|
|
LINKS
|
N. J. A. Sloane, Table of n, a(n) for n = 0..10000
N. J. A. Sloane, Three (No, 8) Lovely Problems from the OEIS, Experimental Mathematics Seminar, Rutgers University, Oct 05 2017, Part I, Part 2, Slides. (Mentions this sequence)
C. R. Wall, Unbounded sequences of Euler-Dedekind means, Amer. Math. Monthly, 92 (1985), 587.
|
|
FORMULA
|
a(n) = 2*a(n-7) for n >= 35, which proves this is unbounded. [Guy, Wall]
|
|
CROSSREFS
|
Cf. A000010, A001615, A291784, A291785, A291786, A291788.
Sequence in context: A183983 A116334 A291788 * A257410 A306103 A045566
Adjacent sequences: A291784 A291785 A291786 * A291788 A291789 A291790
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
N. J. A. Sloane, Sep 02 2017
|
|
EXTENSIONS
|
More terms from Hugo Pfoertner, Sep 03 2017
|
|
STATUS
|
approved
|
|
|
|