login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A362366
Square array A(n, k), n, k >= 0, read by antidiagonals; A(n, k) is the least base >= 2 where the sum n + k can be computed without carry.
2
2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 3, 5, 3, 2, 2, 2, 3, 3, 2, 2, 2, 4, 2, 3, 2, 4, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 5, 5, 4, 4, 5, 5, 2, 2, 2, 3, 2, 6, 4, 4, 4, 6, 2, 3, 2, 2, 2, 2, 2, 4, 4, 4, 4, 2, 2, 2, 2, 2, 5, 5, 3, 2, 5, 5, 5, 2, 3, 5, 5, 2
OFFSET
0,1
LINKS
Wolfdieter Lang, Cantor's List of Real Algebraic Numbers of Heights 1 to 7, arXiv:2307.10645 [math.NT], 2023.
Rémy Sigrist, Colored representation of the array for n, k <= 1024 (the color is function of A(n, k), black pixels denote 2's)
FORMULA
A(n, k) <= max(2, n + k + 1).
A(n, k) = A(k, n).
A(n, 0) = 2.
A(n, n) = A321882(n).
EXAMPLE
Array A(n, k) begins:
n\k | 0 1 2 3 4 5 6 7 8 9 10 11 12
----+-----------------------------------------
0 | 2 2 2 2 2 2 2 2 2 2 2 2 2
1 | 2 3 2 3 2 4 2 3 2 3 2 5 2
2 | 2 2 5 3 2 2 3 5 2 2 5 5 2
3 | 2 3 3 3 2 3 5 6 2 3 3 3 2
4 | 2 2 2 2 3 4 4 4 2 2 2 2 3
5 | 2 4 2 3 4 4 4 5 2 3 2 5 3
6 | 2 2 3 5 4 4 5 5 2 2 3 3 5
7 | 2 3 5 6 4 5 5 5 2 3 3 5 5
8 | 2 2 2 2 2 2 2 2 6 3 5 5 6
9 | 2 3 2 3 2 3 2 3 3 3 3 3 3
10 | 2 2 5 3 2 2 3 3 5 3 3 5 3
11 | 2 5 5 3 2 5 3 5 5 3 5 5 3
12 | 2 2 2 2 3 3 5 5 6 3 3 3 3
PROG
(PARI) A(n, k) = { for (b = 2, oo, if (sumdigits(n+k, b) == sumdigits(n, b) + sumdigits(k, b), return (b); ); ); }
CROSSREFS
Sequence in context: A304523 A368541 A020649 * A183024 A067131 A094915
KEYWORD
nonn,base,tabl
AUTHOR
Rémy Sigrist, Apr 17 2023
STATUS
approved