login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A215286
Number of permutations of 0..floor((n*n-1)/2) on even squares of an n X n array such that each row and column of even squares is increasing.
1
1, 2, 10, 280, 60060, 85765680, 2061378118800, 346915095471584640, 1736278161426147413954880, 62144711688730139887005809020800, 103104526145243794108489566205445861006400
OFFSET
1,2
COMMENTS
Diagonal of A215292.
LINKS
FORMULA
f1 = floor((n+1)/2)
f2 = floor(n/2)
T(n,k) = A060854(f1,f1)*A060854(f2,f2)*binomial(f1*f1+f2*f2,f1*f1).
EXAMPLE
Some solutions for n=5
..0..x..1..x..2....0..x..2..x..6....0..x..2..x..4....1..x..2..x..6
..x..4..x..7..x....x..1..x..3..x....x..3..x..5..x....x..0..x..8..x
..3..x..6..x..9....5..x..8..x.11....1..x..8..x..9....3..x..5..x.10
..x..5..x.11..x....x..4..x..9..x....x..7..x.10..x....x..9..x.12..x
..8..x.10..x.12....7..x.10..x.12....6..x.11..x.12....4..x..7..x.11
CROSSREFS
Sequence in context: A074056 A206158 A144288 * A260231 A003047 A028580
KEYWORD
nonn
AUTHOR
R. H. Hardin, Aug 07 2012
STATUS
approved