login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A215289
Number of permutations of 0..floor((n*5-1)/2) on even squares of an nX5 array such that each row and column of even squares is increasing
1
1, 10, 140, 2100, 60060, 1051050, 42882840, 814773960, 41227562376, 824551247520, 48236247979920, 999179422441200, 64899082486180800, 1379105502831342000, 96951116849043342600, 2100607531729272423000, 157112712418611824074200
OFFSET
1,2
COMMENTS
Column 5 of A215292
LINKS
FORMULA
f3=floor((n+1)/2)
f4=floor(n/2)
a(n) = A060854(3,f3)*A060854(2,f4)*binomial(3*f3+2*f4,3*f3)
EXAMPLE
Some solutions for n=5
..0..x..2..x..6....1..x..2..x..6....0..x..3..x..9....0..x..1..x..8
..x..3..x..4..x....x..0..x..4..x....x..2..x..4..x....x..3..x..6..x
..1..x..7..x.10....7..x..9..x.11....1..x..7..x.11....2..x..4..x..9
..x..5..x.11..x....x..3..x..5..x....x..5..x..8..x....x..7..x.10..x
..8..x..9..x.12....8..x.10..x.12....6..x.10..x.12....5..x.11..x.12
CROSSREFS
Sequence in context: A089834 A132505 A254336 * A319578 A051618 A295034
KEYWORD
nonn
AUTHOR
R. H. Hardin Aug 07 2012
STATUS
approved