login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of permutations of 0..floor((n*5-1)/2) on even squares of an nX5 array such that each row and column of even squares is increasing
1

%I #4 Aug 07 2012 11:35:45

%S 1,10,140,2100,60060,1051050,42882840,814773960,41227562376,

%T 824551247520,48236247979920,999179422441200,64899082486180800,

%U 1379105502831342000,96951116849043342600,2100607531729272423000,157112712418611824074200

%N Number of permutations of 0..floor((n*5-1)/2) on even squares of an nX5 array such that each row and column of even squares is increasing

%C Column 5 of A215292

%H R. H. Hardin, <a href="/A215289/b215289.txt">Table of n, a(n) for n = 1..210</a>

%F f3=floor((n+1)/2)

%F f4=floor(n/2)

%F a(n) = A060854(3,f3)*A060854(2,f4)*binomial(3*f3+2*f4,3*f3)

%e Some solutions for n=5

%e ..0..x..2..x..6....1..x..2..x..6....0..x..3..x..9....0..x..1..x..8

%e ..x..3..x..4..x....x..0..x..4..x....x..2..x..4..x....x..3..x..6..x

%e ..1..x..7..x.10....7..x..9..x.11....1..x..7..x.11....2..x..4..x..9

%e ..x..5..x.11..x....x..3..x..5..x....x..5..x..8..x....x..7..x.10..x

%e ..8..x..9..x.12....8..x.10..x.12....6..x.10..x.12....5..x.11..x.12

%K nonn

%O 1,2

%A _R. H. Hardin_ Aug 07 2012