login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Square array T(n, k) = 2 ^ (Sum_{p prime} [v_p(n) >= v_p(k) > 0]) read by antidiagonals up, where [] is the Iverson bracket and v_p is the p-adic valuation, n >= 1, k >= 1.
1

%I #20 Dec 14 2024 09:15:16

%S 1,1,1,1,2,1,1,1,1,1,1,2,2,1,1,1,1,1,1,1,1,1,2,1,2,1,2,1,1,1,2,1,1,2,

%T 1,1,1,2,1,1,2,2,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,1,4,1,1,1,2,1,1,1,

%U 1,1,1,1,1,1,1,1,1,1,1,2,1,1,1,2,2,1,1,2,1,1

%N Square array T(n, k) = 2 ^ (Sum_{p prime} [v_p(n) >= v_p(k) > 0]) read by antidiagonals up, where [] is the Iverson bracket and v_p is the p-adic valuation, n >= 1, k >= 1.

%C T(n, k) is the number of integers located on the sphere with center n and radius log(k), when the metric is given by log(A089913).

%C T(., k) is multiplicative and k-periodic.

%C T(n, .) is multiplicative and n^2-periodic.

%F T(n, k) = card({x; d(n, x) = log(k)}), if d denotes log(A089913(., .)), which is a metric.

%F T(n, k) = 2 ^ (Sum_{p prime} [v_p(n) >= v_p(k) > 0]).

%F a(n) = 2 ^ A319581(n).

%F T(n, n) = 2 ^ A001221(n) = A034444(n).

%e T(60, 50) = T(2^2 * 3^1 * 5^1, 2^1 * 5^2)

%e = T(2^2, 2^1) * T(3^1, 3^0) * T(5^1, 5^2)

%e = 2^[2 >= 1 > 0] * 2^[1 >= 0 > 0] * 2^[1 >= 2 > 0]

%e = 2^1 * 2^0 * 2^0 = 2 * 1 * 1 = 2.

%e Array begins:

%e k = 1 1 1

%e n 1 2 3 4 5 6 7 8 9 0 1 2

%e = ------------------------

%e 1 | 1 1 1 1 1 1 1 1 1 1 1 1

%e 2 | 1 2 1 1 1 2 1 1 1 2 1 1

%e 3 | 1 1 2 1 1 2 1 1 1 1 1 2

%e 4 | 1 2 1 2 1 2 1 1 1 2 1 2

%e 5 | 1 1 1 1 2 1 1 1 1 2 1 1

%e 6 | 1 2 2 1 1 4 1 1 1 2 1 2

%e 7 | 1 1 1 1 1 1 2 1 1 1 1 1

%e 8 | 1 2 1 2 1 2 1 2 1 2 1 2

%e 9 | 1 1 2 1 1 2 1 1 2 1 1 2

%e 10 | 1 2 1 1 2 2 1 1 1 4 1 1

%e 11 | 1 1 1 1 1 1 1 1 1 1 2 1

%e 12 | 1 2 2 2 1 4 1 1 1 2 1 4

%t F[n_] := If[n == 1, {}, FactorInteger[n]]

%t V[p_] := If[KeyExistsQ[#, p], #[p], 0] &

%t PreT[n_, k_] :=

%t Module[{fn = F[n], fk = F[k], p, an = <||>, ak = <||>, w},

%t p = Union[First /@ fn, First /@ fk];

%t (an[#[[1]]] = #[[2]]) & /@ fn;

%t (ak[#[[1]]] = #[[2]]) & /@ fk;

%t w = ({V[#][an], V[#][ak]}) & /@ p;

%t Select[w, (#[[1]] >= #[[2]] > 0) &]

%t ]

%t T[n_, k_] := 2^Length[PreT[n, k]]

%t A004736[n_] := Binomial[Floor[3/2 + Sqrt[2*n]], 2] - n + 1

%t A002260[n_] := n - Binomial[Floor[1/2 + Sqrt[2*n]], 2]

%t a[n_] := T[A004736[n], A002260[n]]

%t Table[a[n], {n, 1, 90}]

%o (PARI) maxp(n) = if (n==1, 1, vecmax(factor(n)[,1]));

%o T(n, k) = {pmax = max(maxp(n), maxp(k)); x = 0; forprime(p=2, pmax, if ((valuation(n, p) >= valuation(k, p)) && (valuation(k, p) > 0), x ++);); 2^x;} \\ _Michel Marcus_, Oct 28 2018

%Y Cf. A319581 (an additive variant).

%Y Cf. A001221, A034444, A089913.

%K nonn,tabl

%O 1,5

%A _Luc Rousseau_, Sep 24 2018