login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of binary rooted trees with n leaves of n colors and all non-leaf nodes having out-degree 2.
2

%I #12 Apr 10 2020 06:16:19

%S 1,3,18,215,3600,80136,2213036,73068543,2806959015,123002168300,

%T 6055381161852,330885794632536,19872950226273053,1301261803764756855,

%U 92259974680854975000,7041606755629152575055,575638367425376279620662,50180725346542105445190603

%N Number of binary rooted trees with n leaves of n colors and all non-leaf nodes having out-degree 2.

%C Not all of the n colors need to be used.

%H Alois P. Heinz, <a href="/A319580/b319580.txt">Table of n, a(n) for n = 1..352</a>

%H V. P. Johnson, <a href="http://people.math.sc.edu/czabarka/Theses/JohnsonThesis.pdf">Enumeration Results on Leaf Labeled Trees</a>, Ph. D. Dissertation, Univ. Southern Calif., 2012.

%p A:= proc(n, k) option remember; `if`(n<2, k*n, `if`(n::odd, 0,

%p (t-> t*(1-t)/2)(A(n/2, k)))+add(A(i, k)*A(n-i, k), i=1..n/2))

%p end:

%p a:= n-> A(n$2):

%p seq(a(n), n=1..20); # _Alois P. Heinz_, Sep 23 2018

%t A[n_, k_] := A[n, k] = If[n < 2, k n, If[OddQ[n], 0, Function[t, t(1-t) / 2][A[n/2, k]]] + Sum[A[i, k] A[n - i, k], {i, 1, n/2}]];

%t a[n_] := A[n, n];

%t Array[a, 20] (* _Jean-François Alcover_, Apr 10 2020, after _Alois P. Heinz_ *)

%o (PARI) a(n)={my(v=vector(n)); v[1]=n; for(n=2, n, v[n]=sum(j=1, (n-1)\2, v[j]*v[n-j]) + if(n%2, 0, binomial(v[n/2]+1, 2))); v[n]} \\ _Andrew Howroyd_, Sep 23 2018

%Y Main diagonal of A319539.

%Y Cf. A319369, A319541.

%K nonn

%O 1,2

%A _Andrew Howroyd_, Sep 23 2018