login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A331333
Interpolating the factorial and the powers of 2. Triangle read by rows, T(n, k) for 0 <= k <= n.
3
1, 1, 2, 2, 8, 4, 6, 36, 36, 8, 24, 192, 288, 128, 16, 120, 1200, 2400, 1600, 400, 32, 720, 8640, 21600, 19200, 7200, 1152, 64, 5040, 70560, 211680, 235200, 117600, 28224, 3136, 128, 40320, 645120, 2257920, 3010560, 1881600, 602112, 100352, 8192, 256
OFFSET
0,3
FORMULA
T(n, k) = n!*S(n, k) where S(n, k) is recursively defined by:
if k = 0 then 1 else if k > n then 0 else 2*S(n-1, k-1)/k + S(n-1, k).
From Peter Bala, Jan 19 2020: (Start)
T(n,k) = 2^k*(n!/k!)*binomial(n,k).
E.g.f.: 1/ (1 - x)*exp(2*x*t)/(1 - x)) = 1 + (1 + 2*t)*x + (2 + 8*t + 4*t^2)*x^2/2! + .... Cf. A021009. (End)
EXAMPLE
Triangle starts:
[0] 1
[1] 1, 2
[2] 2, 8, 4
[3] 6, 36, 36, 8
[4] 24, 192, 288, 128, 16
[5] 120, 1200, 2400, 1600, 400, 32
[6] 720, 8640, 21600, 19200, 7200, 1152, 64
[7] 5040, 70560, 211680, 235200, 117600, 28224, 3136, 128
[8] 40320, 645120, 2257920, 3010560, 1881600, 602112, 100352, 8192, 256
MAPLE
A331333 := proc(n, k) local S; S := proc(n, k) option remember;
`if`(k = 0, 1, `if`(k > n, 0, 2*S(n-1, k-1)/k + S(n-1, k))) end: n!*S(n, k) end:
seq(seq(A331333(n, k), k=0..n), n=0..8);
CROSSREFS
T(n, 0) = A000142(n), T(n, n) = A000079(n).
Row sums: A087912, alternating row sums: A295382, antidiagonal sums: A222467, positive half sums: A129683, negative half sums: A331334.
Cf. A021009.
Sequence in context: A049331 A369771 A239677 * A120399 A144816 A134812
KEYWORD
nonn,tabl
AUTHOR
Peter Luschny, Jan 19 2020
STATUS
approved