OFFSET
0,3
FORMULA
T(n, k) = n!*S(n, k) where S(n, k) is recursively defined by:
if k = 0 then 1 else if k > n then 0 else 2*S(n-1, k-1)/k + S(n-1, k).
From Peter Bala, Jan 19 2020: (Start)
T(n,k) = 2^k*(n!/k!)*binomial(n,k).
E.g.f.: 1/ (1 - x)*exp(2*x*t)/(1 - x)) = 1 + (1 + 2*t)*x + (2 + 8*t + 4*t^2)*x^2/2! + .... Cf. A021009. (End)
EXAMPLE
Triangle starts:
[0] 1
[1] 1, 2
[2] 2, 8, 4
[3] 6, 36, 36, 8
[4] 24, 192, 288, 128, 16
[5] 120, 1200, 2400, 1600, 400, 32
[6] 720, 8640, 21600, 19200, 7200, 1152, 64
[7] 5040, 70560, 211680, 235200, 117600, 28224, 3136, 128
[8] 40320, 645120, 2257920, 3010560, 1881600, 602112, 100352, 8192, 256
MAPLE
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Peter Luschny, Jan 19 2020
STATUS
approved