login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A049331 Denominator of (1/Pi)*Integral_{0..oo} (sin x / x)^n dx. 5
2, 2, 8, 3, 384, 40, 23040, 630, 1146880, 72576, 1857945600, 3326400, 108999475200, 148262400, 2645053931520, 13621608000, 457065319366656000, 75277762560, 33566877054287216640, 243290200817664 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,1
LINKS
Ulrich Abel and Vitaliy Kushnirevych, Sinc integrals revisited, Mathematische Semesterberichte (2023).
Iskander Aliev, Siegel's Lemma and Sum-Distinct Sets, arXiv:math/0503115 [math.NT] (2005) and Discrete and Computational Geometry, Volume 39, Numbers 1-3 / March, 2008. [Added by N. J. A. Sloane, Jul 09 2009]
Iskander Aliev and Martin Henk, Minkowski's successive minima in convex and discrete geometry, arXiv:2304.00120 [math.MG], 2023.
R. Baillie, D. Borwein and J. M. Borwein, Surprising Sinc Sums and Integrals, Amer. Math. Monthly, 115 (2008), 888-901.
R. G. Medhurst and J. H. Roberts, Evaluation of the integral I_n(b) = (2/Pi)*Integral_{0..inf} (sin x / x)^n cos (bx) dx, Math. Comp., 19 (1965), 113-117.
Eric Weisstein's World of Mathematics, Sinc Function
FORMULA
a(n) = denominator( n*A099765(n)/(2^n*(n-1)!) ). - G. C. Greubel, Apr 01 2022
EXAMPLE
1/2, 1/2, 3/8, 1/3, 115/384, 11/40, ...
MATHEMATICA
Table[ 1/Pi*Integrate[Sinc[x]^n, {x, 0, Infinity}] // Denominator, {n, 1, 20}] (* Jean-François Alcover, Dec 02 2013 *)
Denominator@Table[Sum[(-1)^k (n-2k)^(n-1) Binomial[n, k], {k, 0, n/2}]/((n-1)! 2^n), {n, 1, 30}] (* Vladimir Reshetnikov, Sep 02 2016 *)
PROG
(Magma) [Denominator( (1/(2^n*Factorial(n-1)))*(&+[(-1)^j*Binomial(n, j)*(n-2*j)^(n-1): j in [0..Floor(n/2)]]) ): n in [1..25]]; // G. C. Greubel, Apr 01 2022
(Sage) [denominator( (1/(2^n*factorial(n-1)))*sum((-1)^j*binomial(n, j)*(n-2*j)^(n-1) for j in (0..(n//2))) ) for n in (1..25)] # G. C. Greubel, Apr 01 2022
CROSSREFS
Cf. 2*A002298 (except for n=4 term), A049330.
Sequence in context: A093731 A195361 A274041 * A369771 A239677 A331333
KEYWORD
nonn,frac,easy,nice
AUTHOR
N. J. A. Sloane, Mark S. Riggs (msr1(AT)ra.msstate.edu), Dec 11 1999
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 22 23:31 EDT 2024. Contains 374544 sequences. (Running on oeis4.)