login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A049330 Numerator of (1/Pi)*Integral_{x=0..infinity} (sin(x)/x)^n dx. 6
1, 1, 3, 1, 115, 11, 5887, 151, 259723, 15619, 381773117, 655177, 20646903199, 27085381, 467168310097, 2330931341, 75920439315929441, 12157712239, 5278968781483042969, 37307713155613, 9093099984535515162569, 339781108897078469, 168702835448329388944396777 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,3
LINKS
Ulrich Abel and Vitaliy Kushnirevych, Sinc integrals revisited, Mathematische Semesterberichte (2023).
Iskander Aliev, Siegel's Lemma and Sum-Distinct Sets, (2005) arXiv:math/0503115 [math.NT]; Discrete and Computational Geometry, Volume 39, Numbers 1-3 / March, 2008. [Added by N. J. A. Sloane, Jul 09 2009]
Iskander Aliev and Martin Henk, Minkowski's successive minima in convex and discrete geometry, arXiv:2304.00120 [math.MG], 2023.
R. Baillie, D. Borwein and J. M. Borwein, Surprising Sinc Sums and Integrals, Amer. Math. Monthly, 115 (2008), 888-901.
R. G. Medhurst and J. H. Roberts, Evaluation of the integral I_n(b) = (2/Pi)*Integral_{0..inf} (sin x / x)^n cos (bx) dx, Math. Comp., 19 (1965), 113-117.
Eric Weisstein's World of Mathematics, Sinc Function
FORMULA
a(n) = numerator( n*A099765(n)/(2^n*(n-1)!) ). - G. C. Greubel, Apr 01 2022
EXAMPLE
1/2, 1/2, 3/8, 1/3, 115/384, 11/40, ...
MATHEMATICA
Numerator[Table[Integrate[(Sin[x]/x)^n, {x, 0, \[Infinity]}]/Pi, {n, 25}]] (* Harvey P. Dale, Jan 01 2013 *)
Numerator@Table[Sum[(-1)^k (n-2k)^(n-1) Binomial[n, k], {k, 0, n/2}]/((n-1)! 2^n), {n, 1, 30}] (* Vladimir Reshetnikov, Sep 02 2016 *)
PROG
(Magma) [Numerator( (1/(2^n*Factorial(n-1)))*(&+[(-1)^j*Binomial(n, j)*(n-2*j)^(n-1): j in [0..Floor(n/2)]]) ): n in [1..25]]; // G. C. Greubel, Apr 01 2022
(Sage) [numerator( (1/(2^n*factorial(n-1)))*sum((-1)^j*binomial(n, j)*(n-2*j)^(n-1) for j in (0..(n//2))) ) for n in (1..25)] # G. C. Greubel, Apr 01 2022
CROSSREFS
Cf. Same as A002297 except for n=4 term, A049331.
Sequence in context: A352232 A221195 A071291 * A274040 A367948 A369187
KEYWORD
nonn,frac,easy,nice
AUTHOR
N. J. A. Sloane, Mark S. Riggs (msr1(AT)ra.msstate.edu), Dec 11 1999
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 24 21:32 EDT 2024. Contains 374585 sequences. (Running on oeis4.)