The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A274041 Denominator of the rational coefficient at the first power of Pi in Sum_{k>0} (sin(k)/k)^n. 1
 2, 2, 8, 3, 384, 40, 15360, 210, 1146880, 672, 137625600, 30800, 1153433600, 332800 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 LINKS EXAMPLE a(1) = 2, because Sum_{k>0} (sin(k)/k)^1 = (1/2)*Pi - 1/2. a(2) = 2, because Sum_{k>0} (sin(k)/k)^2 = (1/2)*Pi - 1/2. a(3) = 8, because Sum_{k>0} (sin(k)/k)^3 = (3/8)*Pi - 1/2. a(4) = 3, because Sum_{k>0} (sin(k)/k)^4 = (1/3)*Pi - 1/2. This simple pattern breaks starting at n = 7: a(7) = 15360, because Sum_{k>0} (sin(k)/k)^7 = (1/720)*Pi^7 - (7/240)*Pi^6 + (49/192)*Pi^5 - (343/288)*Pi^4 + (2401/768)*Pi^3 - (16807/3840)*Pi^2 + (43141/15360)*Pi - 1/2. MATHEMATICA a[n_] := Denominator@Coefficient[Sum[Sinc[k]^n, {k, 1, Infinity}], Pi] CROSSREFS Cf. A274040 (numerators). Sequence in context: A143440 A093731 A195361 * A049331 A239677 A331333 Adjacent sequences:  A274038 A274039 A274040 * A274042 A274043 A274044 KEYWORD nonn,more,hard,frac AUTHOR Vladimir Reshetnikov, Jun 07 2016 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 8 18:58 EDT 2022. Contains 356016 sequences. (Running on oeis4.)