login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A274041 Denominator of the rational coefficient at the first power of Pi in Sum_{k>0} (sin(k)/k)^n. 1
2, 2, 8, 3, 384, 40, 15360, 210, 1146880, 672, 137625600, 30800, 1153433600, 332800 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

LINKS

Table of n, a(n) for n=1..14.

EXAMPLE

a(1) = 2, because Sum_{k>0} (sin(k)/k)^1 = (1/2)*Pi - 1/2.

a(2) = 2, because Sum_{k>0} (sin(k)/k)^2 = (1/2)*Pi - 1/2.

a(3) = 8, because Sum_{k>0} (sin(k)/k)^3 = (3/8)*Pi - 1/2.

a(4) = 3, because Sum_{k>0} (sin(k)/k)^4 = (1/3)*Pi - 1/2.

This simple pattern breaks starting at n = 7:

a(7) = 15360, because Sum_{k>0} (sin(k)/k)^7 = (1/720)*Pi^7 - (7/240)*Pi^6 + (49/192)*Pi^5 - (343/288)*Pi^4 + (2401/768)*Pi^3 - (16807/3840)*Pi^2 + (43141/15360)*Pi - 1/2.

MATHEMATICA

a[n_] := Denominator@Coefficient[Sum[Sinc[k]^n, {k, 1, Infinity}], Pi]

CROSSREFS

Cf. A274040 (numerators).

Sequence in context: A143440 A093731 A195361 * A049331 A239677 A331333

Adjacent sequences:  A274038 A274039 A274040 * A274042 A274043 A274044

KEYWORD

nonn,more,hard,frac

AUTHOR

Vladimir Reshetnikov, Jun 07 2016

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 8 18:58 EDT 2022. Contains 356016 sequences. (Running on oeis4.)