login
A098551
Inverse of A098550.
12
1, 2, 3, 4, 9, 10, 15, 6, 5, 16, 22, 12, 23, 8, 7, 14, 30, 31, 43, 18, 17, 20, 51, 33, 11, 25, 19, 27, 61, 39, 62, 29, 24, 35, 13, 37, 79, 41, 21, 48, 87, 44, 88, 46, 26, 56, 101, 52, 40, 50, 28, 54, 114, 69, 34, 58, 47, 63, 127, 71, 132, 60, 42, 65, 36, 73, 142, 67, 49, 80, 153
OFFSET
1,2
COMMENTS
Now known to be a permutation of the natural numbers: see the 2015 article by Applegate, Havermann, Selcoe, Shevelev, Sloane, and Zumkeller.
LINKS
David L. Applegate, Hans Havermann, Bob Selcoe, Vladimir Shevelev, N. J. A. Sloane, and Reinhard Zumkeller, The Yellowstone Permutation, arXiv preprint arXiv:1501.01669 [math.NT], 2015.
FORMULA
A098553(n) = a(a(n)).
MATHEMATICA
f[lst_List] := Block[{k = 4}, While[ GCD[ lst[[-2]], k] == 1 || GCD[ lst[[-1]], k] > 1 || MemberQ[lst, k], k++]; Append[lst, k]]; Table[ Position[ Nest[ f, {1, 2, 3}, 120], n], {n, 71}] // Flatten (* Robert G. Wilson v, Nov 21 2014 *)
PROG
(Haskell)
import Data.List (elemIndex); import Data.Maybe (fromJust)
a098551 = (+ 1) . fromJust . (`elemIndex` a098550_list)
-- Reinhard Zumkeller, Nov 21 2014
CROSSREFS
Cf. A249943 (partial maxima).
Sequence in context: A273907 A066105 A083180 * A249943 A251620 A128944
KEYWORD
nonn
AUTHOR
Reinhard Zumkeller, Sep 14 2004
STATUS
approved