login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A156320
List of prime pairs of the form (p, p+8).
4
3, 11, 5, 13, 11, 19, 23, 31, 29, 37, 53, 61, 59, 67, 71, 79, 89, 97, 101, 109, 131, 139, 149, 157, 173, 181, 191, 199, 233, 241, 263, 271, 269, 277, 359, 367, 389, 397, 401, 409, 431, 439, 449, 457, 479, 487, 491, 499, 563, 571, 569, 577, 593, 601, 599, 607, 653, 661, 683, 691, 701
OFFSET
1,1
LINKS
Fernando Neres de Oliveira, On the Solvability of the Diophantine Equation p^x + (p + 8)^y = z^2 when p > 3 and p + 8 are Primes, Annals of Pure and Applied Mathematics (2018) Vol. 18, No. 1, 9-13.
FORMULA
a(2n+1) = A023202(n+1). a(2n+2) = A092402(n+1). [R. J. Mathar, Feb 09 2009]
MATHEMATICA
Flatten[Select[{#, # + 8} &/@Prime[Range[1000]], PrimeQ[Last[#]]&]] (* Vincenzo Librandi, Nov 01 2012 *)
PROG
(Python)
from sympy import isprime, primerange
for pn in primerange(1, 300):
if isprime(pn+8):
print(pn, pn+8)
# Stefano Spezia, Dec 06 2018
CROSSREFS
Sequence in context: A308968 A084466 A084462 * A134969 A139686 A212782
KEYWORD
nonn,tabf
AUTHOR
Vincenzo Librandi, Feb 08 2009
STATUS
approved